Advertisement
Review Article| Volume 18, ISSUE 2, P259-266, April 2023

Neuroendocrine Tumor Diagnosis

PET/MR Imaging
Published:January 25, 2023DOI:https://doi.org/10.1016/j.cpet.2022.11.008

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to PET Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Fernandez C.J.
        • Agarwal M.
        • Pottakkat B.
        • et al.
        Gastroenteropancreatic neuroendocrine neoplasms: a clinical snapshot.
        World J Gastrointest Surg. 2021; 13: 231-255
        • Rindi G.
        • Mete O.
        • Uccella S.
        • et al.
        Overview of the 2022 WHO classification of neuroendocrine neoplasms.
        Endocr Pathol. 2022; 33: 115-154
        • Panagiotidis E.
        • Alshammari A.
        • Michopoulou S.
        • et al.
        Comparison of the impact of 68Ga-DOTATATE and 18F-FDG PET/CT on clinical management in patients with neuroendocrine tumors.
        J Nucl Med. 2017; 58: 91-96
        • Rindi G.
        • Wiedenmann B.
        Neuroendocrine neoplasia of the gastrointestinal tract revisited: towards precision medicine.
        Nat Rev Endocrinol. 2020; 16: 590-607
        • Konukiewitz B.
        • Schlitter A.M.
        • Jesinghaus M.
        • et al.
        Somatostatin receptor expression related to TP53 and RB1 alterations in pancreatic and extrapancreatic neuroendocrine neoplasms with a Ki67-index above 20.
        Mod Pathol. 2017; 30: 587-598
        • Sundin A.
        • Arnold R.
        • Baudin E.
        • et al.
        ENETS consensus guidelines for the standards of care in neuroendocrine tumors: radiological, nuclear medicine & hybrid imaging.
        Neuroendocrinology. 2017; 105: 212-244
        • Blanchet E.M.
        • Millo C.
        • Martucci V.
        • et al.
        Integrated whole-body PET/MRI with 18F-FDG, 18F-FDOPA, and 18F-FDA in paragangliomas in comparison with PET/CT: NIH first clinical experience with a single-injection, dual-modality imaging protocol.
        Clin Nucl Med. 2014; 39: 243-250
        • Beiderwellen K.J.
        • Poeppel T.D.
        • Hartung-Knemeyer V.
        • et al.
        Simultaneous 68Ga-DOTATOC PET/MRI in patients with gastroenteropancreatic neuroendocrine tumors: initial results.
        Invest Radiol. 2013; 48: 273-279
        • Sawicki L.M.
        • Deuschl C.
        • Beiderwellen K.
        • et al.
        Evaluation of (68)Ga-DOTATOC PET/MRI for whole-body staging of neuroendocrine tumours in comparison with (68)Ga-DOTATOC PET/CT.
        Eur Radiol. 2017; 27: 4091-4099
        • Berzaczy D.
        • Giraudo C.
        • Haug A.R.
        • et al.
        Whole-body 68Ga-DOTANOC PET/MRI versus 68Ga-DOTANOC PET/CT in patients with neuroendocrine tumors: a prospective study in 28 patients.
        Clin Nucl Med. 2017; 42: 669-674
        • Modlin I.M.
        • Lye K.D.
        • Kidd M.
        A 5-decade analysis of 13,715 carcinoid tumors.
        Cancer. 2003; 97: 934-959
        • Oberg K.
        • Eriksson B.
        Endocrine tumours of the pancreas.
        Best Pract Res Clin Gastroenterol. 2005; 19: 753-781
        • Frilling A.
        • Li J.
        • Malamutmann E.
        • et al.
        Treatment of liver metastases from neuroendocrine tumours in relation to the extent of hepatic disease.
        Br J Surg. 2009; 96: 175-184
        • Madeira I.
        • Terris B.
        • Voss M.
        • et al.
        Prognostic factors in patients with endocrine tumours of the duodenopancreatic area.
        Gut. 1998; 43: 422-427
        • Tomassetti P.
        • Campana D.
        • Piscitelli L.
        • et al.
        Endocrine pancreatic tumors: factors correlated with survival.
        Ann Oncol. 2005; 16: 1806-1810
        • Dromain C.
        • de Baere T.
        • Lumbroso J.
        • et al.
        Detection of liver metastases from endocrine tumors: a prospective comparison of somatostatin receptor scintigraphy, computed tomography, and magnetic resonance imaging.
        J Clin Oncol. 2005; 23: 70-78
        • Sahani D.V.
        • Bonaffini P.A.
        • Fernandez-Del Castillo C.
        • et al.
        Gastroenteropancreatic neuroendocrine tumors: role of imaging in diagnosis and management.
        Radiology. 2013; 266: 38-61
        • Ronot M.
        • Cuccioli F.
        • Dioguardi Burgio M.
        • et al.
        Neuroendocrine liver metastases: vascular patterns on triple-phase MDCT are indicative of primary tumour location.
        Eur J Radiol. 2017; 89: 156-162
        • Hope T.A.
        • Pampaloni M.H.
        • Nakakura E.
        • et al.
        Simultaneous (68)Ga-DOTA-TOC PET/MRI with gadoxetate disodium in patients with neuroendocrine tumor.
        Abdom Imaging. 2015; 40: 1432-1440
        • Raj N.
        • Coffman K.
        • Le T.
        • et al.
        Treatment response and clinical outcomes of well-differentiated high-grade neuroendocrine tumors to lutetium-177-DOTATATE.
        Neuroendocrinology. 2022; https://doi.org/10.1159/000525216
        • Schreiter N.F.
        • Nogami M.
        • Steffen I.
        • et al.
        Evaluation of the potential of PET-MRI fusion for detection of liver metastases in patients with neuroendocrine tumours.
        Eur Radiol. 2012; 22: 458-467
        • Donati O.F.
        • Hany T.F.
        • Reiner C.S.
        • et al.
        Value of retrospective fusion of PET and MR images in detection of hepatic metastases: comparison with 18F-FDG PET/CT and Gd-EOB-DTPA-enhanced MRI.
        J Nucl Med. 2010; 51: 692-699
        • Monti S.
        • Cavaliere C.
        • Covello M.
        • et al.
        An evaluation of the benefits of simultaneous acquisition on PET/MR coregistration in head/neck imaging.
        J Healthc Eng. 2017; 2017: 2634389
        • Jawlakh H.
        • Velikyan I.
        • Welin S.
        • et al.
        68) Ga-DOTATOC-PET/MRI and (11) C-5-HTP-PET/MRI are superior to (68) Ga-DOTATOC-PET/CT for neuroendocrine tumour imaging.
        J Neuroendocrinol. 2021; 33: e12981
        • Hayoz R.
        • Vietti-Violi N.
        • Duran R.
        • et al.
        The combination of hepatobiliary phase with Gd-EOB-DTPA and DWI is highly accurate for the detection and characterization of liver metastases from neuroendocrine tumor.
        Eur Radiol. 2020; 30: 6593-6602
        • Mayerhoefer M.E.
        • Ba-Ssalamah A.
        • Weber M.
        • et al.
        Gadoxetate-enhanced versus diffusion-weighted MRI for fused Ga-68-DOTANOC PET/MRI in patients with neuroendocrine tumours of the upper abdomen.
        Eur Radiol. 2013; 23: 1978-1985
        • Reubi J.C.
        Peptide receptor expression in GEP-NET.
        Virchows Arch. 2007; 451: S47-S50
        • Binderup T.
        • Knigge U.
        • Johnbeck C.B.
        • et al.
        (18)F-FDG-PET is superior to who grading as a prognostic tool in neuroendocrine neoplasms and useful in guiding PRRT: a prospective 10-year follow-up study.
        J Nucl Med. 2021; 62: 808-815
        • Naswa N.
        • Sharma P.
        • Gupta S.K.
        • et al.
        Dual tracer functional imaging of gastroenteropancreatic neuroendocrine tumors using 68Ga-DOTA-NOC PET-CT and 18F-FDG PET-CT: competitive or complimentary?.
        Clin Nucl Med. 2014; 39: e27-e34
        • Mapelli P.
        • Partelli S.
        • Salgarello M.
        • et al.
        Dual tracer 68Ga-DOTATOC and 18F-FDG PET improve preoperative evaluation of aggressiveness in resectable pancreatic neuroendocrine neoplasms.
        Diagnostics (Basel). 2021; 11https://doi.org/10.3390/diagnostics11020192
        • Kinahan P.E.
        • Hasegawa B.H.
        • Beyer T.
        X-ray-based attenuation correction for positron emission tomography/computed tomography scanners.
        Semin Nucl Med. 2003; 33: 166-179
        • Chen Y.
        • An H.
        Attenuation correction of PET/MR imaging.
        Magn Reson Imaging Clin N Am. 2017; 25: 245-255
        • Akbarzadeh A.
        • Ay M.R.
        • Ahmadian A.
        • et al.
        MRI-guided attenuation correction in whole-body PET/MR: assessment of the effect of bone attenuation.
        Ann Nucl Med. 2013; 27: 152-162
        • Delso G.
        • Wiesinger F.
        • Sacolick L.I.
        • et al.
        Clinical evaluation of zero-echo-time MR imaging for the segmentation of the skull.
        J Nucl Med. 2015; 56: 417-422
        • Delso G.
        • Carl M.
        • Wiesinger F.
        • et al.
        Anatomic evaluation of 3-dimensional ultrashort-echo-time bone maps for PET/MR attenuation correction.
        J Nucl Med. 2014; 55: 780-785
        • Hwang D.
        • Kang S.K.
        • Kim K.Y.
        • et al.
        Generation of PET attenuation map for whole-body time-of-flight (18)F-FDG PET/MRI using a deep neural network trained with simultaneously reconstructed activity and attenuation maps.
        J Nucl Med. 2019; 60: 1183-1189
        • Leynes A.P.
        • Yang J.
        • Wiesinger F.
        • et al.
        Zero-Echo-Time and Dixon Deep Pseudo-CT (ZeDD CT): direct generation of pseudo-CT images for pelvic PET/MRI attenuation correction using deep convolutional neural networks with multiparametric MRI.
        J Nucl Med. 2018; 59: 852-858
        • Zaharchuk G.
        • Davidzon G.
        Artificial intelligence for optimization and interpretation of PET/CT and PET/MR images.
        Semin Nucl Med. 2021; 51: 134-142
        • Seith F.
        • Gatidis S.
        • Schmidt H.
        • et al.
        Comparison of positron emission tomography quantification using magnetic resonance- and computed tomography-based attenuation correction in physiological tissues and lesions: a whole-body positron emission tomography/magnetic resonance study in 66 patients.
        Invest Radiol. 2016; 51: 66-71
        • Liu G.
        • Cao T.
        • Hu L.
        • et al.
        Validation of MR-based attenuation correction of a newly released whole-body simultaneous PET/MR system.
        Biomed Res Int. 2019; 2019: 8213215
        • Fraum T.J.
        • Fowler K.J.
        • McConathy J.
        Conspicuity of FDG-Avid osseous lesions on PET/MRI versus PET/CT: a quantitative and visual analysis.
        Nucl Med Mol Imaging. 2016; 50: 228-239
        • Moradi F.
        • Iagaru A.
        • McConathy J.
        Clinical applications of PET/MR imaging.
        Radiol Clin North Am. 2021; 59: 853-874
        • Samarin A.
        • Burger C.
        • Wollenweber S.D.
        • et al.
        PET/MR imaging of bone lesions--implications for PET quantification from imperfect attenuation correction.
        Eur J Nucl Med Mol Imaging. 2012; 39: 1154-1160
        • Seith F.
        • Schraml C.
        • Reischl G.
        • et al.
        Fast non-enhanced abdominal examination protocols in PET/MRI for patients with neuroendocrine tumors (NET): comparison to multiphase contrast-enhanced PET/CT.
        Radiol Med. 2018; 123: 860-870
        • Wang X.
        • Pirasteh A.
        • Brugarolas J.
        • et al.
        Whole-body MRI for metastatic cancer detection using T2 -weighted imaging with fat and fluid suppression.
        Magn Reson Med. 2018; 80: 1402-1415
        • Duan H.
        • Baratto L.
        • Hatami N.
        • et al.
        Reduced acquisition time per bed position for PET/MRI using (68)Ga-RM2 or (68)Ga-PSMA-11 in patients with prostate cancer: a retrospective analysis.
        AJR Am J Roentgenol. 2022; 218: 333-340
        • Crimi F.
        • Varotto A.
        • Orsatti G.
        • et al.
        Lung visualisation on PET/MRI: implementing a protocol with a short echo-time and low flip-angle volumetric interpolated breath-hold examination sequence.
        Clin Radiol. 2020; 75: 239.e15-239.e21
        • Chassagnon G.
        • Martin C.
        • Ben Hassen W.
        • et al.
        High-resolution lung MRI with ultrashort-TE: 1.5 or 3 Tesla?.
        Magn Reson Imaging. Sep 2019; 61: 97-103
        • Zhu X.
        • Chan M.
        • Lustig M.
        • et al.
        Iterative motion-compensation reconstruction ultra-short TE (iMoCo UTE) for high-resolution free-breathing pulmonary MRI.
        Magn Reson Med. 2020; 83: 1208-1221