Advertisement
Review Article| Volume 18, ISSUE 2, P169-187, April 2023

Neuroendocrine Neoplasms

Genetics and Epigenetics

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to PET Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Rickman D.S.
        • Beltran H.
        • Demichelis F.
        • et al.
        Biology and evolution of poorly differentiated neuroendocrine tumors.
        Nat Med. 2017; 23: 664-673
        • Rindi G.
        • Inzani F.
        Neuroendocrine neoplasm update: toward universal nomenclature.
        Endocr Relat Cancer. 2020; 27: R211-R218
        • Hofland J.
        • Kaltsas G.
        • de Herder W.W.
        Advances in the diagnosis and management of well-differentiated neuroendocrine neoplasms.
        Endocr Rev. 2020; 41: 371-403
        • van Riet J.
        • van de Werken H.J.G.
        • Cuppen E.
        • et al.
        The genomic landscape of 85 advanced neuroendocrine neoplasms reveals subtype-heterogeneity and potential therapeutic targets.
        Nat Commun. 2021; 12: 4612
        • Kawasaki K.
        • Toshimitsu K.
        • Matano M.
        • et al.
        An organoid biobank of neuroendocrine neoplasms enables genotype-phenotype mapping.
        Cell. 2020; 183: 1420-1435
        • Pavel M.
        • Öberg K.
        • Falconi M.
        • et al.
        Gastroenteropancreatic neuroendocrine neoplasms: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up.
        Ann Oncol. 2020; 31: 844-860
        • Malczewska A.
        • Kidd M.
        • Matar S.
        • et al.
        A comprehensive assessment of the role of miRNAs as biomarkers in gastroenteropancreatic neuroendocrine tumors.
        Neuroendocrinology. 2018; 107: 73-90
        • Turai P.I.
        • Nyírő G.
        • Butz H.
        • et al.
        MicroRNAs, long non-coding RNAs, and circular RNAs: potential biomarkers and therapeutic targets in pheochromocytoma/paraganglioma.
        Cancers (Basel). 2021; 13: 1522
        • Kidd M.
        • Modlin I.
        • Öberg K.
        Towards a new classification of gastroenteropancreatic neuroendocrine neoplasms.
        Nat Rev Clin Oncol. 2016; 13: 691-705
        • Venizelos A.
        • Elvebakken H.
        • Perren A.
        • et al.
        The molecular characteristics of high-grade gastroenteropancreatic neuroendocrine neoplasms.
        Endocr Relat Cancer. 2022; 29: 1-14
        • Kidd M.
        • Modlin I.M.
        • Bodei L.
        • et al.
        Decoding the molecular and mutational ambiguities of gastroenteropancreatic neuroendocrine neoplasm pathobiology.
        Cell Mol Gastroenterol Hepatol. 2015; 1: 131-153
        • Zikusoka M.N.
        • Kidd M.
        • Eick G.
        • et al.
        The molecular genetics of gastroenteropancreatic neuroendocrine tumors.
        Cancer Interdiscip Int J Am Cancer Soc. 2005; 104: 2292-2309
        • Perren A.
        • Komminoth P.
        • Saremaslani P.
        • et al.
        Mutation and expression analyses reveal differential subcellular compartmentalization of PTEN in endocrine pancreatic tumors compared to normal islet cells.
        Am J Pathol. 2000; 157: 1097-1103
        • Hu W.
        • Feng Z.
        • Modica I.
        • et al.
        Gene amplifications in well-differentiated pancreatic neuroendocrine tumors inactivate the p53 pathway.
        Genes Cancer. 2010; 1: 360-368
        • Kytölä S.
        • Höög A.
        • Nord B.
        • et al.
        Comparative genomic hybridization identifies loss of 18q22-qter as an early and specific event in tumorigenesis of midgut carcinoids.
        Am J Pathol. 2001; 158: 1803-1808
        • Kytölä S.
        • Nord B.
        • Edström Elder E.
        • et al.
        Alterations of the SDHD gene locus in midgut carcinoids, Merkel cell carcinomas, pheochromocytomas, and abdominal paragangliomas.
        Genes Chromosomes Cancer. 2002; 34: 325-332
        • Banck M.S.
        • Kanwar R.
        • Kulkarni A.A.
        • et al.
        The genomic landscape of small intestine neuroendocrine tumors.
        J Clin Invest. 2013; 123: 2502-2508
        • Pipinikas C.P.
        • Berner A.M.
        • Sposito T.
        • et al.
        The evolving (epi) genetic landscape of pancreatic neuroendocrine tumours.
        Endocr Relat Cancer. 2019; 26: R519-R544
        • House M.G.
        • Herman J.G.
        • Guo M.Z.
        • et al.
        Aberrant hypermethylation of tumor suppressor genes in pancreatic endocrine neoplasms.
        Ann Surg. 2003; 238: 423
        • Kidd M.
        • Eick G.
        • Shapiro M.D.
        • et al.
        Microsatellite instability and gene mutations in transforming growth factor-beta type II receptor are absent in small bowel carcinoid tumors.
        Cancer. 2005; 103: 229-236
        • April-Monn S.L.
        • Andreasi V.
        • Schiavo Lena M.
        • et al.
        EZH2 inhibition as new epigenetic treatment option for pancreatic neuroendocrine neoplasms (PanNENs).
        Cancers (Basel). 2021; 13: 5014
        • Barazeghi E.
        • Hellman P.
        • Norlén O.
        • et al.
        EZH2 presents a therapeutic target for neuroendocrine tumors of the small intestine.
        Sci Rep. 2021; 11: 22733
        • Rahman M.M.
        • Qian Z.R.
        • Wang E.L.
        • et al.
        DNA methyltransferases 1, 3a, and 3b overexpression and clinical significance in gastroenteropancreatic neuroendocrine tumors.
        Hum Pathol. 2010; 41: 1069-1078
        • How-Kit A.
        • Dejeux E.
        • Dousset B.
        • et al.
        DNA methylation profiles distinguish different subtypes of gastroenteropancreatic neuroendocrine tumors.
        Epigenomics. 2015; 7: 1245-1258
        • Simon T.
        • Riemer P.
        • Jarosch A.
        • et al.
        DNA methylation reveals distinct cells of origin for pancreatic neuroendocrine carcinomas and pancreatic neuroendocrine tumors.
        Genome Med. 2022; 14: 1-14
        • Hackeng W.M.
        • Dreijerink K.M.A.
        • de Leng W.W.J.
        • et al.
        Genome methylation accurately predicts neuroendocrine tumor origin: an online tool.
        Clin Cancer Res. 2021; 27: 1341-1350
        • Larsson C.
        • Skogseid B.
        • Öberg K.
        • et al.
        Multiple endocrine neoplasia type 1 gene maps to chromosome 11 and is lost in insulinoma.
        Nature. 1988; 332: 85-87
        • Richard S.
        • Giraud S.
        • Beroud C.
        • et al.
        Von Hippel-Lindau disease: recent genetic progress and patient management. Francophone Study Group of von Hippel-Lindau Disease (GEFVH).
        Ann Endocrinol (Paris). 1998; 59: 452-458
        • Jiao Y.
        • Shi C.
        • Edil B.H.
        • et al.
        DAXX/ATRX, MEN1, and mTOR pathway genes are frequently altered in pancreatic neuroendocrine tumors.
        Science. 2011; 331: 1199-1203
        • Marinoni I.
        • Kurrer A.S.
        • Vassella E.
        • et al.
        Loss of DAXX and ATRX are associated with chromosome instability and reduced survival of patients with pancreatic neuroendocrine tumors.
        Gastroenterology. 2014; 146: 453-460
        • Scarpa A.
        • Chang D.K.
        • Nones K.
        • et al.
        Whole-genome landscape of pancreatic neuroendocrine tumours.
        Nature. 2017; 543: 65-71
        • Puccini A.
        • Poorman K.
        • Salem M.E.
        • et al.
        Comprehensive genomic profiling of gastroenteropancreatic neuroendocrine neoplasms (GEP-NENs).
        Clin Cancer Res. 2020; 26: 5943-5951
        • Mitsui J.
        • Takahashi Y.
        • Goto J.
        • et al.
        Mechanisms of genomic instabilities underlying two common fragile-site-associated loci, PARK2 and DMD, in germ cell and cancer cell lines.
        Am J Hum Genet. 2010; 87: 75-89
        • Jelinkova S.
        • Fojtik P.
        • Kohutova A.
        • et al.
        Dystrophin deficiency leads to genomic instability in human pluripotent stem cells via NO synthase-induced oxidative stress.
        Cells. 2019; 8: 53
        • Lin W.
        • Watanabe H.
        • Peng S.
        • et al.
        Dynamic epigenetic regulation by menin during pancreatic islet tumor formation.
        Mol Cancer Res. 2015; 13: 689-698
        • Di Domenico A.
        • Wiedmer T.
        • Marinoni I.
        • et al.
        Genetic and epigenetic drivers of neuroendocrine tumours (NET).
        Endocr Relat Cancer. 2017; 24: R315-R334
        • Jia D.
        • Augert A.
        • Kim D.-W.
        • et al.
        Crebbp loss drives small cell lung cancer and increases sensitivity to HDAC inhibition.
        Cancer Discov. 2018; 8: 1422-1437
        • Fotouhi O.
        • Adel Fahmideh M.
        • Kjellman M.
        • et al.
        Global hypomethylation and promoter methylation in small intestinal neuroendocrine tumors: an in vivo and in vitro study.
        Epigenetics. 2014; 9: 987-997
        • Lakis V.
        • Lawlor R.T.
        • Newell F.
        • et al.
        DNA methylation patterns identify subgroups of pancreatic neuroendocrine tumors with clinical association.
        Commun Biol. 2021; 4: 1-11
        • Chan A.O.-O.
        • Kim S.G.
        • Bedeir A.
        • et al.
        CpG island methylation in carcinoid and pancreatic endocrine tumors.
        Oncogene. 2003; 22: 924-934
        • Walter T.
        • Van Brakel B.
        • Vercherat C.
        • et al.
        O6-Methylguanine-DNA methyltransferase status in neuroendocrine tumours: prognostic relevance and association with response to alkylating agents.
        Br J Cancer. 2015; 112: 523-531
        • Schmitt A.M.
        • Schmid S.
        • Rudolph T.
        • et al.
        VHL inactivation is an important pathway for the development of malignant sporadic pancreatic endocrine tumors.
        Endocr Relat Cancer. 2009; 16: 1219-1227
        • Tirosh A.
        • Mukherjee S.
        • Lack J.
        • et al.
        Distinct genome-wide methylation patterns in sporadic and hereditary nonfunctioning pancreatic neuroendocrine tumors.
        Cancer. 2019; 125: 1247-1257
        • Francis J.M.
        • Kiezun A.
        • Ramos A.H.
        • et al.
        Somatic mutation of CDKN1B in small intestine neuroendocrine tumors.
        Nat Genet. 2013; 45: 1483-1486
        • Karpathakis A.
        • Dibra H.
        • Pipinikas C.
        • et al.
        Prognostic impact of novel molecular subtypes of small intestinal neuroendocrine tumor.
        Clin Cancer Res. 2016; 22: 250-258
        • Andersson E.
        • Arvidsson Y.
        • Swärd C.
        • et al.
        Expression profiling of small intestinal neuroendocrine tumors identifies subgroups with clinical relevance, prognostic markers and therapeutic targets.
        Mod Pathol. 2016; 29: 616-629
        • Simbolo M.
        • Vicentini C.
        • Mafficini A.
        • et al.
        Mutational and copy number asset of primary sporadic neuroendocrine tumors of the small intestine.
        Virchows Arch. 2018; 473: 709-717
        • Sei Y.
        • Zhao X.
        • Forbes J.
        • et al.
        A hereditary form of small intestinal carcinoid associated with a germline mutation in inositol polyphosphate multikinase.
        Gastroenterology. 2015; 149: 67-78
        • Dumanski J.P.
        • Rasi C.
        • Björklund P.
        • et al.
        A MUTYH germline mutation is associated with small intestinal neuroendocrine tumors.
        Endocr Relat Cancer. 2017; 24: 427-443
        • Zhang H.-Y.
        • Rumilla K.M.
        • Jin L.
        • et al.
        Association of DNA methylation and epigenetic inactivation of RASSF1A and beta-catenin with metastasis in small bowel carcinoid tumors.
        Endocrine. 2006; 30: 299-306
        • Edfeldt K.
        • Ahmad T.
        • Åkerström G.
        • et al.
        TCEB3C a putative tumor suppressor gene of small intestinal neuroendocrine tumors.
        Endocr Relat Cancer. 2014; 21: 275-284
        • Verdugo A.D.
        • Crona J.
        • Starker L.
        • et al.
        Global DNA methylation patterns through an array-based approach in small intestinal neuroendocrine tumors.
        Endocr Relat Cancer. 2014; 21: L5-L7
        • Choi I.-S.
        • Estecio M.R.
        • Nagano Y.
        • et al.
        Hypomethylation of LINE-1 and Alu in well-differentiated neuroendocrine tumors (pancreatic endocrine tumors and carcinoid tumors).
        Mod Pathol. 2007; 20: 802-810
        • Barazeghi E.
        • Prabhawa S.
        • Norlén O.
        • et al.
        Decrease of 5-hydroxymethylcytosine and TET1 with nuclear exclusion of TET2 in small intestinal neuroendocrine tumors.
        BMC Cancer. 2018; 18: 764
        • Chen L.
        • Liu M.
        • Zhang Y.
        • et al.
        Genetic characteristics of colorectal neuroendocrine carcinoma: more similar to colorectal adenocarcinoma.
        Clin Colorectal Cancer. 2021; 20: 177-185.e113
        • Capdevila J.
        • Arqués O.
        • Hernández Mora J.R.
        • et al.
        Epigenetic EGFR gene repression confers sensitivity to therapeutic BRAFV600E blockade in colon neuroendocrine carcinomas.
        Clin Cancer Res. 2020; 26: 902-909
        • Shamir E.R.
        • Devine W.P.
        • Pekmezci M.
        • et al.
        Identification of high-risk human papillomavirus and Rb/E2F pathway genomic alterations in mutually exclusive subsets of colorectal neuroendocrine carcinoma.
        Mod Pathol. 2019; 32: 290-305
        • Pelosi G.
        • Sonzogni A.
        • Harari S.
        • et al.
        Classification of pulmonary neuroendocrine tumors: new insights.
        Translational Lung Cancer Res. 2017; 6: 513
        • Pelosi G.
        • Bianchi F.
        • Dama E.
        • et al.
        Most high-grade neuroendocrine tumours of the lung are likely to secondarily develop from pre-existing carcinoids: innovative findings skipping the current pathogenesis paradigm.
        Virchows Arch. 2018; 472: 567-577
        • Fernandez-Cuesta L.
        • Peifer M.
        • Lu X.
        • et al.
        Frequent mutations in chromatin-remodelling genes in pulmonary carcinoids.
        Nat Commun. 2014; 5: 1-7
        • Rea F.
        • Rizzardi G.
        • Zuin A.
        • et al.
        Outcome and surgical strategy in bronchial carcinoid tumors: single institution experience with 252 patients.
        Eur J Cardiothorac Surg. 2007; 31: 186-191
        • Simbolo M.
        • Mafficini A.
        • Sikora K.O.
        • et al.
        Lung neuroendocrine tumours: deep sequencing of the four World Health Organization histotypes reveals chromatin-remodelling genes as major players and a prognostic role for TERT, RB1, MEN1 and KMT2D.
        J Pathol. 2017; 241: 488-500
        • Laddha S.V.
        • Da Silva E.M.
        • Robzyk K.
        • et al.
        Integrative genomic characterization identifies molecular subtypes of lung carcinoids.
        Cancer Res. 2019; 79: 4339-4347
        • Cros J.
        • Théou-Anton N.
        • Gounant V.
        • et al.
        Specific genomic alterations in high-grade pulmonary neuroendocrine tumours with carcinoid morphology.
        Neuroendocrinology. 2021; 111: 158-169
        • Alcala N.
        • Leblay N.
        • Gabriel A.A.G.
        • et al.
        Integrative and comparative genomic analyses identify clinically relevant pulmonary carcinoid groups and unveil the supra-carcinoids.
        Nat Commun. 2019; 10: 1-21
        • Swarts D.R.A.
        • Scarpa A.
        • Corbo V.
        • et al.
        MEN1 gene mutation and reduced expression are associated with poor prognosis in pulmonary carcinoids.
        J Clin Endocrinol Metab. 2014; 99: E374-E378
        • George J.
        • Lim J.S.
        • Jang S.J.
        • et al.
        Comprehensive genomic profiles of small cell lung cancer.
        Nature. 2015; 524: 47-53
        • Armengol G.
        • Sarhadi V.K.
        • Rönty M.
        • et al.
        Driver gene mutations of non-small-cell lung cancer are rare in primary carcinoids of the lung: NGS study by ion Torrent.
        Lung. 2015; 193: 303-308
        • Walch A.K.
        • Zitzelsberger H.F.
        • Aubele M.M.
        • et al.
        Typical and atypical carcinoid tumors of the lung are characterized by 11q deletions as detected by comparative genomic hybridization.
        Am J Pathol. 1998; 153: 1089-1098
        • Swarts D.R.A.
        • Ramaekers F.C.S.
        • Speel E.-J.M.
        Molecular and cellular biology of neuroendocrine lung tumors: evidence for separate biological entities.
        Biochim Biophys Acta (BBA)-Reviews Cancer. 2012; 1826: 255-271
        • Rekhtman N.
        • Pietanza M.C.
        • Hellmann M.D.
        • et al.
        Next-generation sequencing of pulmonary large cell neuroendocrine carcinoma reveals small cell carcinoma–like and non–small cell carcinoma–like subsets.
        Clin Cancer Res. 2016; 22: 3618-3629
        • George J.
        • Walter V.
        • Peifer M.
        • et al.
        Integrative genomic profiling of large-cell neuroendocrine carcinomas reveals distinct subtypes of high-grade neuroendocrine lung tumors.
        Nat Commun. 2018; 9: 1-13
        • Rudin C.M.
        • Durinck S.
        • Stawiski E.W.
        • et al.
        Comprehensive genomic analysis identifies SOX2 as a frequently amplified gene in small-cell lung cancer.
        Nat Genet. 2012; 44: 1111-1116
        • Derks J.L.
        • Leblay N.
        • Thunnissen E.
        • et al.
        Molecular subtypes of pulmonary large-cell neuroendocrine carcinoma predict chemotherapy treatment outcome.
        Clin Cancer Res. 2018; 24: 33-42
        • Hermans B.C.M.
        • Derks J.L.
        • Thunnissen E.
        • et al.
        Prevalence and prognostic value of PD-L1 expression in molecular subtypes of metastatic large cell neuroendocrine carcinoma (LCNEC).
        Lung Cancer. 2019; 130: 179-186
        • Wistuba II,
        • Behrens C.
        • Virmani A.K.
        • et al.
        High resolution chromosome 3p allelotyping of human lung cancer and preneoplastic/preinvasive bronchial epithelium reveals multiple, discontinuous sites of 3p allele loss and three regions of frequent breakpoints.
        Cancer Res. 2000; 60: 1949-1960
        • Kim K.-B.
        • Kim Y.
        • Rivard C.J.
        • et al.
        FGFR1 is critical for RBL2 loss–driven tumor development and requires PLCG1 activation for continued growth of small cell lung cancer.
        Cancer Res. 2020; 80: 5051-5062
        • Vollbrecht C.
        • Werner R.
        • Walter R.F.H.
        • et al.
        Mutational analysis of pulmonary tumours with neuroendocrine features using targeted massive parallel sequencing: a comparison of a neglected tumour group.
        Br J Cancer. 2015; 113: 1704-1711
        • Ireland A.S.
        • Micinski A.M.
        • Kastner D.W.
        • et al.
        MYC drives temporal evolution of small cell lung cancer subtypes by reprogramming neuroendocrine fate.
        Cancer Cell. 2020; 38: 60-78
        • Rudin C.M.
        • Poirier J.T.
        • Byers L.A.
        • et al.
        Molecular subtypes of small cell lung cancer: a synthesis of human and mouse model data.
        Nat Rev Cancer. 2019; 19: 289-297
        • Sutherland K.D.
        • Ireland A.S.
        • Oliver T.G.
        Killing SCLC: insights into how to target a shapeshifting tumor.
        Genes Dev. 2022; 36: 241-258
        • Sonkin D.
        • Thomas A.
        • Teicher B.A.
        Are neuroendocrine negative small cell lung cancer and large cell neuroendocrine carcinoma with WT RB1 two faces of the same entity?.
        Lung Cancer Manag. 2019; 8: LMT13
        • Meder L.
        • König K.
        • Ozretić L.
        • et al.
        NOTCH, ASCL1, p53 and RB alterations define an alternative pathway driving neuroendocrine and small cell lung carcinomas.
        Int J Cancer. 2016; 138: 927-938
        • Hermans B.C.M.
        • Derks J.L.
        • Thunnissen E.
        • et al.
        DLL3 expression in large cell neuroendocrine carcinoma (LCNEC) and association with molecular subtypes and neuroendocrine profile.
        Lung Cancer. 2019; 138: 102-108
        • Lim J.S.
        • Ibaseta A.
        • Fischer M.M.
        • et al.
        Intratumoural heterogeneity generated by Notch signalling promotes small-cell lung cancer.
        Nature. 2017; 545: 360-364
        • George J.
        • Saito M.
        • Tsuta K.
        • et al.
        Genomic amplification of CD274 (PD-L1) in small-cell lung cancer.
        Clin Cancer Res. 2017; 23: 1220-1226
        • Capodanno A.
        • Boldrini L.
        • Alì G.
        • et al.
        Phosphatidylinositol-3-kinase α catalytic subunit gene somatic mutations in bronchopulmonary neuroendocrine tumours.
        Oncol Rep. 2012; 28: 1559-1566
        • Mohammad H.P.
        • Smitheman K.N.
        • Kamat C.D.
        • et al.
        A DNA hypomethylation signature predicts antitumor activity of LSD1 inhibitors in SCLC.
        Cancer Cell. 2015; 28: 57-69
        • Sabari J.K.
        • Lok B.H.
        • Laird J.H.
        • et al.
        Unravelling the biology of SCLC: implications for therapy.
        Nat Rev Clin Oncol. 2017; 14: 549-561
        • Murai F.
        • Koinuma D.
        • Shinozaki-Ushiku A.
        • et al.
        EZH2 promotes progression of small cell lung cancer by suppressing the TGF-β-Smad-ASCL1 pathway.
        Cell Discov. 2015; 1: 1-17
        • Toyooka S.
        • Toyooka K.O.
        • Maruyama R.
        • et al.
        DNA methylation profiles of lung tumors1.
        Mol Cancer Ther. 2001; 1: 61-67
        • Richter A.M.
        • Kiehl S.
        • Köger N.
        • et al.
        ZAR1 is a novel epigenetically inactivated tumour suppressor in lung cancer.
        Clin Epigenetics. 2017; 9: 1-12
        • Kalari S.
        • Jung M.
        • Kernstine K.H.
        • et al.
        The DNA methylation landscape of small cell lung cancer suggests a differentiation defect of neuroendocrine cells.
        Oncogene. 2013; 32: 3559-3568
        • Sunaga N.
        • Miyajima K.
        • Suzuki M.
        • et al.
        Different roles for caveolin-1 in the development of non-small cell lung cancer versus small cell lung cancer.
        Cancer Res. 2004; 64: 4277-4285
        • Simbolo M.
        • Barbi S.
        • Fassan M.
        • et al.
        Gene expression profiling of lung atypical carcinoids and large cell neuroendocrine carcinomas identifies three transcriptomic subtypes with specific genomic alterations.
        J Thorac Oncol. 2019; 14: 1651-1661
        • Qiu H.
        • Jin B.-M.
        • Wang Z.-F.
        • et al.
        MEN1 deficiency leads to neuroendocrine differentiation of lung cancer and disrupts the DNA damage response.
        Nat Commun. 2020; 11: 1-12
        • Neumann H.P.H.
        • Young Jr., W.F.
        • Eng C.
        Pheochromocytoma and paraganglioma.
        N Engl J Med. 2019; 381: 552-565
        • Mulligan L.M.
        • Kwok J.B.J.
        • Healey C.S.
        • et al.
        Germ-line mutations of the RET proto-oncogene in multiple endocrine neoplasia type 2A.
        Nature. 1993; 363: 458-460
        • Latif F.
        • Tory K.
        • Gnarra J.
        • et al.
        Identification of the von Hippel-Lindau disease tumor suppressor gene.
        Science. 1993; 260: 1317-1320
        • Bausch B.
        • Borozdin W.
        • Neumann H.P.
        • European-American pheochromocytoma study G
        Clinical and genetic characteristics of patients with neurofibromatosis type 1.
        N Engl J Med. 2006; 1: 2729-2731
        • Fishbein L.
        • Leshchiner I.
        • Walter V.
        • et al.
        Comprehensive molecular characterization of pheochromocytoma and paraganglioma.
        Cancer Cell. 2017; 31: 181-193
        • Moog S.
        • Lussey-Lepoutre C.
        • Favier J.
        Epigenetic and metabolic reprogramming of SDH-deficient paragangliomas.
        Endocr Relat Cancer. 2020; 27: R451-R463
        • Favier J.
        • Gimenez-Roqueplo A.-P.
        Pheochromocytomas: the (pseudo)-hypoxia hypothesis.
        Best Pract Res Clin Endocrinol Metab. 2010; 24: 957-968
        • Crona J.
        • Delgado Verdugo A.
        • Maharjan R.
        • et al.
        Somatic mutations in H-RAS in sporadic pheochromocytoma and paraganglioma identified by exome sequencing.
        J Clin Endocrinol Metab. 2013; 98: E1266-E1271
        • Yeh I.T.
        • Lenci R.E.
        • Qin Y.
        • et al.
        A germline mutation of the KIF1Bβ gene on 1p36 in a family with neural and nonneural tumors.
        Hum Genet. 2008; 124: 279-285
        • Qin Y.
        • Yao L.
        • King E.E.
        • et al.
        Germline mutations in TMEM127 confer susceptibility to pheochromocytoma.
        Nat Genet. 2010; 42: 229-233
        • Toledo R.A.
        • Qin Y.
        • Cheng Z.M.
        • et al.
        Recurrent mutations of chromatin-remodeling genes and kinase receptors in pheochromocytomas and paragangliomas.
        Clin Cancer Res. 2016; 22: 2301-2310
        • Fishbein L.
        • Khare S.
        • Wubbenhorst B.
        • et al.
        Whole-exome sequencing identifies somatic ATRX mutations in pheochromocytomas and paragangliomas.
        Nat Commun. 2015; 6: 6140
        • Jochmanova I.
        • Pacak K.
        Genomic landscape of pheochromocytoma and paraganglioma.
        Trends Cancer. 2018; 4: 6-9
        • Taipale J.
        • Beachy P.A.
        The Hedgehog and Wnt signalling pathways in cancer.
        Nature. 2001; 411: 349-354
        • Pelullo M.
        • Zema S.
        • Nardozza F.
        • et al.
        Wnt, Notch, and TGF-β pathways impinge on hedgehog signaling complexity: an open window on cancer.
        Front Genet. 2019; 10: 711
        • Letouzé E.
        • Martinelli C.
        • Loriot C.
        • et al.
        SDH mutations establish a hypermethylator phenotype in paraganglioma.
        Cancer Cell. 2013; 23: 739-752
        • Backman S.
        • Maharjan R.
        • Falk-Delgado A.
        • et al.
        Global DNA methylation analysis identifies two discrete clusters of pheochromocytoma with distinct genomic and genetic alterations.
        Sci Rep. 2017; 7: 44943
        • Remacha L.
        • Currás-Freixes M.
        • Torres-Ruiz R.
        • et al.
        Gain-of-function mutations in DNMT3A in patients with paraganglioma.
        Genet Med. 2018; 20: 1644-1651
        • Eisenhofer G.
        • Klink B.
        • Richter S.
        • et al.
        Metabologenomics of phaeochromocytoma and paraganglioma: an integrated approach for personalised biochemical and genetic testing.
        Clin Biochemist Rev. 2017; 38: 69
        • De Cubas A.A.
        • Korpershoek E.
        • Inglada-Pérez L.
        • et al.
        DNA methylation profiling in pheochromocytoma and paraganglioma reveals diagnostic and prognostic markers.
        Clin Cancer Res. 2015; 21: 3020-3030
        • Kiss N.B.
        • Geli J.
        • Lundberg F.
        • et al.
        Methylation of the p16INK4A promoter is associated with malignant behavior in abdominal extra-adrenal paragangliomas but not pheochromocytomas.
        Endocr Relat Cancer. 2008; 15: 609
        • Kiss N.B.
        • Muth A.
        • Andreasson A.
        • et al.
        Acquired hypermethylation of the P16INK4A promoter in abdominal paraganglioma: relation to adverse tumor phenotype and predisposing mutation.
        Endocr Relat Cancer. 2013; 20: 65-78
        • Briest F.
        • Grabowski P.
        PI3K-AKT-mTOR-signaling and beyond: the complex network in gastroenteropancreatic neuroendocrine neoplasms.
        Theranostics. 2014; 4: 336-365
        • Sundin A.
        • Arnold R.
        • Baudin E.
        • et al.
        ENETS consensus guidelines for the standards of care in neuroendocrine tumors: radiological, nuclear medicine and hybrid imaging.
        Neuroendocrinology. 2017; 105: 212-244
        • Werner R.A.
        • Weich A.
        • Higuchi T.
        • et al.
        Imaging of chemokine receptor 4 expression in neuroendocrine tumors-a triple tracer comparative approach.
        Theranostics. 2017; 7: 1489
        • Kaemmerer D.
        • Träger T.
        • Hoffmeister M.
        • et al.
        Inverse expression of somatostatin and CXCR4 chemokine receptors in gastroenteropancreatic neuroendocrine neoplasms of different malignancy.
        Oncotarget. 2015; 6: 27566
        • Kidd M.
        • Modlin I.M.
        • Drozdov I.
        • et al.
        A liquid biopsy for bronchopulmonary/lung carcinoid diagnosis.
        Oncotarget. 2018; 9: 7182
        • Öberg K.
        • Califano A.
        • Strosberg J.R.
        • et al.
        A meta-analysis of the accuracy of a neuroendocrine tumor mRNA genomic biomarker (NETest) in blood.
        Ann Oncol. 2020; 31: 202-212
        • Modlin I.M.
        • Kidd M.
        • Frilling A.
        • et al.
        Molecular genomic assessment using a blood-based mRNA signature (NETest) is cost-effective and predicts neuroendocrine tumor recurrence with 94% accuracy.
        Ann Surg. 2021; 274: 481-490
        • Singh S.
        • Bergsland E.K.
        • Card C.M.
        • et al.
        Commonwealth neuroendocrine tumour research collaboration and the north American neuroendocrine tumor society guidelines for the diagnosis and management of patients with lung neuroendocrine tumors: an international collaborative endorsement and update of the 2015 European neuroendocrine tumor society expert consensus guidelines.
        J Thorac Oncol. 2020; 15: 1577-1598
        • Öberg K.
        • Castellano D.
        Current knowledge on diagnosis and staging of neuroendocrine tumors.
        Cancer Metastasis Rev. 2011; 30: 3-7
        • Grogan R.H.
        • Mitmaker E.J.
        • Duh Q.-Y.
        Changing paradigms in the treatment of malignant pheochromocytoma.
        Cancer Control. 2011; 18: 104-112
        • Zandee W.T.
        • de Herder W.W.
        The evolution of neuroendocrine tumor treatment reflected by ENETS guidelines.
        Neuroendocrinology. 2018; 106: 357-365
        • Lin J.P.
        • Zhao Y.J.
        • He Q.L.
        • et al.
        Adjuvant chemotherapy for patients with gastric neuroendocrine carcinomas or mixed adenoneuroendocrine carcinomas.
        Br J Surg. 2020; 107: 1163-1170
        • Schmitz R.
        • Mao R.
        • Moris D.
        • et al.
        Impact of Postoperative chemotherapy on the survival of patients with high-grade gastroenteropancreatic neuroendocrine carcinoma.
        Ann Surg Oncol. 2021; 28: 114-120
        • Rinke A.
        • Müller H.H.
        • Schade-Brittinger C.
        • et al.
        PROMID Study Group, Placebo-controlled, double-blind, prospective, randomized study on the effect of octreotide LAR in the control of tumor growth in patients with metastatic neuroendocrine midgut tumors: a report from the PROMID Study Group.
        J Clin Oncol. 2009; 27: 4656-4663
        • Ferolla P.
        • Brizzi M.P.
        • Meyer T.
        • et al.
        Efficacy and safety of long-acting pasireotide or everolimus alone or in combination in patients with advanced carcinoids of the lung and thymus (LUNA): an open-label, multicentre, randomised, phase 2 trial.
        Lancet Oncol. 2017; 18: 1652-1664
        • Caplin M.E.
        • Pavel M.
        • Phan A.T.
        • et al.
        Lanreotide autogel/depot in advanced enteropancreatic neuroendocrine tumours: final results of the CLARINET open-label extension study.
        Endocrine. 2021; 71: 502-513
        • Caplin M.E.
        • Pavel M.
        • Ćwikła J.B.
        • et al.
        Lanreotide in metastatic enteropancreatic neuroendocrine tumors.
        N Engl J Med. 2014; 371: 224-233
        • Brabander T.
        • Van der Zwan W.A.
        • Teunissen J.J.M.
        • et al.
        Long-term efficacy, survival, and safety of [177Lu-DOTA0, Tyr3] octreotate in patients with gastroenteropancreatic and bronchial neuroendocrine tumors.
        Clin Cancer Res. 2017; 23: 4617-4624
        • Strosberg J.
        • El-Haddad G.
        • Wolin E.
        • et al.
        Phase 3 trial of 177Lu-Dotatate for midgut neuroendocrine tumors.
        N Engl J Med. 2017; 376: 125-135
        • Satapathy S.
        • Mittal B.R.
        • Bhansali A.
        Peptide receptor radionuclide therapy in the management of advanced pheochromocytoma and paraganglioma: a systematic review and meta-analysis.
        Clin Endocrinol (Oxf). 2019; 91: 718-727
        • Taïeb D.
        • Jha A.
        • Treglia G.
        • et al.
        Molecular imaging and radionuclide therapy of pheochromocytoma and paraganglioma in the era of genomic characterization of disease subgroups.
        Endocr Relat Cancer. 2019; 26: R627-R652
        • Spyroglou A.
        • Bramis K.
        • Alexandraki K.I.
        Neuroendocrine neoplasms: evolving and future treatments.
        Curr Opin Endocr Metab Res. 2021; 19: 15-21
        • Guenter R.E.
        • Aweda T.
        • Carmona Matos D.M.
        • et al.
        Pulmonary carcinoid surface receptor modulation using histone deacetylase inhibitors.
        Cancers (Basel). 2019; 11: 767
        • Jin X.-F.
        • Auernhammer C.J.
        • Ilhan H.
        • et al.
        Combination of 5-fluorouracil with epigenetic modifiers induces radiosensitization, somatostatin receptor 2 expression, and radioligand binding in neuroendocrine tumor cells in vitro.
        J Nucl Med. 2019; 60: 1240-1246
        • Pryma D.A.
        • Chin B.B.
        • Noto R.B.
        • et al.
        Efficacy and safety of high-specific-activity 131I-MIBG therapy in patients with advanced pheochromocytoma or paraganglioma.
        J Nucl Med. 2019; 60: 623-630
        • Zhu M.
        • Costello B.A.
        • Yin J.
        • et al.
        Phase II trial of bevacizumab monotherapy in pancreatic neuroendocrine tumors.
        Pancreas. 2021; 50: 1435-1439
        • Halperin D.M.
        • Lee J.J.
        • Ng C.S.
        • et al.
        A phase II trial of ziv-aflibercept in patients with advanced pancreatic neuroendocrine tumors.
        Pancreas. 2019; 48: 381-386
        • Raymond E.
        • Dahan L.
        • Raoul J.-L.
        • et al.
        Sunitinib malate for the treatment of pancreatic neuroendocrine tumors.
        N Engl J Med. 2011; 364: 501-513
        • Yao J.C.
        • Lombard-Bohas C.
        • Baudin E.
        • et al.
        Daily oral everolimus activity in patients with metastatic pancreatic neuroendocrine tumors after failure of cytotoxic chemotherapy: a phase II trial.
        J Clin Oncol. 2010; 28: 69
        • Yao J.C.
        • Shah M.H.
        • Ito T.
        • et al.
        Everolimus for advanced pancreatic neuroendocrine tumors.
        N Engl J Med. 2011; 364: 514-523
        • Yao J.C.
        • Fazio N.
        • Singh S.
        • et al.
        Everolimus for the treatment of advanced, non-functional neuroendocrine tumours of the lung or gastrointestinal tract (RADIANT-4): a randomised, placebo-controlled, phase 3 study.
        The Lancet. 2016; 387: 968-977
        • Fazio N.
        • Kulke M.
        • Rosbrook B.
        • et al.
        Updated efficacy and safety outcomes for patients with well-differentiated pancreatic neuroendocrine tumors treated with sunitinib.
        Target Oncol. 2021; 16: 27-35
        • Druce M.R.
        • Kaltsas G.A.
        • Fraenkel M.
        • et al.
        Novel and evolving therapies in the treatment of malignant phaeochromocytoma: experience with the mTOR inhibitor everolimus (RAD001).
        Horm Metab Res. 2009; 41: 697-702
        • Oh D.Y.
        • Kim T.W.
        • Park Y.S.
        • et al.
        Phase 2 study of everolimus monotherapy in patients with nonfunctioning neuroendocrine tumors or pheochromocytomas/paragangliomas.
        Cancer. 2012; 118: 6162-6170
        • Daskalakis K.
        • Tsoli M.
        • Angelousi A.
        • et al.
        Anti-tumour activity of everolimus and sunitinib in neuroendocrine neoplasms.
        Endocr Connections. 2019; 8: 641-653
        • Klempner S.J.
        • Gershenhorn B.
        • Tran P.
        • et al.
        BRAFV600E mutations in high-grade colorectal neuroendocrine tumors may predict responsiveness to BRAF–MEK combination therapy.
        Cancer Discov. 2016; 6: 594-600
        • Cao Y.
        • Ma Y.
        • Yu J.
        • et al.
        Favorable response to immunotherapy in a pancreatic neuroendocrine tumor with temozolomide-induced high tumor mutational burden.
        Cancer Commun. 2020; 40: 746-751
        • Shen L.
        • Yu X.
        • Lu M.
        • et al.
        Surufatinib in combination with toripalimab in patients with advanced neuroendocrine carcinoma: results from a multicenter, open-label, single-arm, phase II trial.
        J Clin Oncol. 2021; 39: e16199
        • Halperin D.M.
        • Liu S.
        • Dasari A.
        • et al.
        A phase II trial of atezolizumab and bevacizumab in patients with advanced, progressive neuroendocrine tumors (NETs).
        Am Soc Clin Oncol. 2020; 38: 619
        • Klein O.
        • Kee D.
        • Markman B.
        • et al.
        Immunotherapy of ipilimumab and nivolumab in patients with advanced neuroendocrine tumors: a subgroup analysis of the CA209-538 clinical trial for rare cancers.
        Clin Cancer Res. 2020; 26: 4454-4459
        • Patel S.P.
        • Mayerson E.
        • Chae Y.K.
        • et al.
        A phase II basket trial of Dual Anti-CTLA-4 and Anti-PD-1 Blockade in Rare Tumors (DART) SWOG S1609: high-grade neuroendocrine neoplasm cohort.
        Cancer. 2021; 127: 3194-3201
        • Capdevila J.
        • Teule A.
        • López C.
        • et al.
        1157O A multi-cohort phase II study of durvalumab plus tremelimumab for the treatment of patients (pts) with advanced neuroendocrine neoplasms (NENs) of gastroenteropancreatic or lung origin: the DUNE trial (GETNE 1601).
        Ann Oncol. 2020; 31: S770-S771
        • Xu J.X.
        • Wu D.H.
        • Ying L.W.
        • et al.
        Immunotherapies for well-differentiated grade 3 gastroenteropancreatic neuroendocrine tumors: a new category in the World Health Organization classification.
        World J Gastroenterol. 2021; 27: 8123-8137
        • Rudin C.M.
        • Pietanza M.C.
        • Bauer T.M.
        • et al.
        Rovalpituzumab tesirine, a DLL3-targeted antibody-drug conjugate, in recurrent small-cell lung cancer: a first-in-human, first-in-class, open-label, phase 1 study.
        Lancet Oncol. 2017; 18: 42-51
        • Johnson M.L.
        • Zvirbule Z.
        • Laktionov K.
        • et al.
        Rovalpituzumab tesirine as a maintenance therapy after first-line platinum-based chemotherapy in patients with extensive-stage–SCLC: results from the phase 3 MERU study.
        J Thorac Oncol. 2021; 16: 1570-1581
        • Blackhall F.
        • Jao K.
        • Greillier L.
        • et al.
        Efficacy and safety of rovalpituzumab tesirine compared with topotecan as second-line therapy in DLL3-high SCLC: results from the phase 3 TAHOE study.
        J Thorac Oncol. 2021; 16: 1547-1558
        • Uprety D.
        • Remon J.
        • Adjei A.A.
        All that glitters is not gold: the story of rovalpituzumab tesirine in SCLC.
        J Thorac Oncol. 2021; 16: 1429-1433
        • Jin N.
        • Lubner S.J.
        • Mulkerin D.L.
        • et al.
        A phase II trial of a histone deacetylase inhibitor panobinostat in patients with low-grade neuroendocrine tumors.
        Oncologist. 2016; 21: 785-786g
        • Balasubramaniam S.
        • Redon C.E.
        • Peer C.J.
        • et al.
        Phase I trial of belinostat with cisplatin and etoposide in advanced solid tumors, with a focus on neuroendocrine and small cell cancers of the lung.
        Anticancer Drugs. 2018; 29: 457
        • Schmitz R.L.
        • Weissbach J.
        • Kleilein J.
        • et al.
        Targeting hdacs in pancreatic neuroendocrine tumor models.
        Cells. 2021; 10: 1408
        • Wanek J.
        • Gaisberger M.
        • Beyreis M.
        • et al.
        Pharmacological inhibition of class IIA HDACs by LMK-235 in pancreatic neuroendocrine tumor cells.
        Int J Mol Sci. 2018; 19: 3128
        • Koga S.
        • Onishi H.
        • Masuda S.
        • et al.
        PTPN3 is a potential target for a new cancer immunotherapy that has a dual effect of T cell activation and direct cancer inhibition in lung neuroendocrine tumor.
        Transl Oncol. 2021; 14: 101152
        • Matlac D.M.
        • Hadrava Vanova K.
        • Bechmann N.
        • et al.
        Succinate mediates tumorigenic effects via succinate receptor 1: potential for new targeted treatment strategies in succinate dehydrogenase deficient paragangliomas.
        Front Endocrinol (Lausanne). 2021; 12: 129
        • Ullrich M.
        • Richter S.
        • Seifert V.
        • et al.
        Targeting cyclooxygenase-2 in pheochromocytoma and paraganglioma: focus on genetic background.
        Cancers (Basel). 2019; 11
        • Pang Y.
        • Lu Y.
        • Caisova V.
        • et al.
        Targeting NAD+/PARP DNA repair pathway as a novel therapeutic approach to SDHB-mutated cluster I pheochromocytoma and paraganglioma.
        Clin Cancer Res. 2018; 24: 3423-3432
        • Kamihara J.
        • Hamilton K.V.
        • Pollard J.A.
        • et al.
        Belzutifan, a potent HIF2α inhibitor, in the Pacak–Zhuang syndrome.
        N Engl J Med. 2021; 385: 2059-2065
        • Chen W.
        • Hill H.
        • Christie A.
        • et al.
        Targeting renal cell carcinoma with a HIF-2 antagonist.
        Nature. 2016; 539: 112-117
        • Caisova V.
        • Li L.
        • Gupta G.
        • et al.
        The significant reduction or complete eradication of subcutaneous and metastatic lesions in a pheochromocytoma mouse model after immunotherapy using mannan-BAM, TLR ligands, and anti-CD40.
        Cancers (Basel). 2019; 11: 654
        • Marotta V.
        • Zatelli M.C.
        • Sciammarella C.
        • et al.
        Chromogranin A as circulating marker for diagnosis and management of neuroendocrine neoplasms: more flaws than fame.
        Endocr Relat Cancer. 2018; 25: R11-R29
        • Sabari J.K.
        • Julian R.A.
        • Ni A.
        • et al.
        Outcomes of advanced pulmonary large cell neuroendocrine carcinoma stratified by RB1 loss, SLFN11 expression, and tumor mutational burden.
        Am Soc Clin Oncol. 2018; 36: e20568