Advertisement

Brain PET and Cerebrovascular Disease

Published:October 27, 2022DOI:https://doi.org/10.1016/j.cpet.2022.09.007

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to PET Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Wardlaw J.
        • Smith E.
        • Biessels G.
        • et al.
        Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration.
        Lancet Neurol. 2013; 12: 822-838
        • Keith J.
        • Gao F.Q.
        • Noor R.
        • et al.
        Collagenosis of the deep medullary veins: an unrecognized pathologic correlate of white matter hyperintensities and periventricular infarction?.
        J Neuropathol Exp Neurol. 2017; 76: 299-312
        • Houck A.L.
        • Gutierrez J.
        • Gao F.
        • et al.
        Increased diameters of the internal cerebral veins and the basal veins of rosenthal are associated with white matter hyperintensity volume.
        AJNR Am J Neuroradiol. 2019; 40: 1712-1718
        • Kapasi A.
        • DeCarli C.
        • Schneider J.A.
        Impact of multiple pathologies on the threshold for clinically overt dementia.
        Acta Neuropathol. 2017; 134: 171-186
        • DeTure M.A.
        • Dickson D.W.
        The neuropathological diagnosis of Alzheimer’s disease.
        Mol Neurodegeneration. 2019; 14: 1-18
        • Zukotynski K.
        • Kuo P.H.
        • Mikulis D.
        • et al.
        PET/CT of dementia.
        AJR. 2018; 211: 246-259
        • Gorelick P.B.
        • Scuteri A.
        • Black S.E.
        • et al.
        Vascular contributions to cognitive impairment and dementia: a statement for healthcare professionals from the american heart association/american stroke association.
        Stroke. 2011; 42: 2672-2713
        • Kalaria R.N.
        Neuropathological diagnosis of vascular cognitive impairment and vascular dementia with implications for Alzheimer’s disease.
        Acta Neuropathol. 2016; 131: 659-685
        • Kalaria R.N.
        Cerebrovascular disease and mechanisms of cognitive impairment.
        Stroke. 2012; 43: 2526-2534
        • Leys D.
        • Henon H.
        • Mackowiak-Cordoliani M.A.
        • et al.
        Poststroke dementia.
        Lancet Neurol. 2005; 4: 752-759
        • Allan L.M.
        • Rowan E.N.
        • Firbank M.J.
        • et al.
        Long term incidence of dementia, predictors of mortality and pathological diagnosis in older stroke survivors.
        Brain. 2011; 134: 3713-3724
        • Thal D.R.
        • Grinberg L.T.
        • Attems J.
        Vascular dementia: different forms of vessel disorders contribute to the development of dementia in the elderly brain.
        Exp Gerontol. 2012; 47: 816-824
        • DeCarli C.
        • Murphy D.G.
        • Tranh M.
        • et al.
        The effect of white matter hyperintensity volume on brain structure, cognitive performance, and cerebral metabolism of glucose in 51 healthy adults.
        Neurology. 1995; 45: 2077-2084
        • Kim H.J.
        • Kang S.J.
        • Kim C.
        • et al.
        The effects of small vessel disease and amyloid burden on neuropsychiatric symptoms: a study among patients with subcortical vascular cognitive impairments.
        Neurobiol Aging. 2013; 34: 1913-1920
        • Iturria-Medina Y.
        • Sotero R.C.
        • Toussaint P.J.
        • et al.
        Early role of vascular dysregulation on late-onset Alzheimer’s disease based on multifactorial data-driven analysis.
        Nat Commun. 2016; 7: 11934
        • Marnane M.
        • Al-Jawadi O.O.
        • Mortazavi S.
        • et al.
        Periventricular hyperintensities are associated with elevated cerebral amylois.
        Neurology. 2016; 86: 535-543
        • Rosenborough A.
        • Ramirez J.
        • Black S.
        • et al.
        Associations between amyloid β and white matter hyperintenties: a systematic review.
        Alzheimers Dement. 2017; 13: 1154-1167
        • Kim H.J.
        • Im K.
        • Kwon H.
        • et al.
        Effects of amyloid and small vessel disease on white matter network disruption.
        J Alzheimers Dis. 2015; 44: 963-975
        • Kim H.J.
        • Im K.
        • Kwon H.
        • et al.
        Clinical effect of white matter network disruption related to amyloid and small vessel disease.
        Neurology. 2015; 85: 63-70
        • Kim H.J.
        • Ye B.S.
        • Yoon C.W.
        • et al.
        Cortical thickness and hippocampal shape in pure vascular mild cognitive impairment and dementia of subcortical type.
        Eur J Neurol. 2014; 21: 744-751
        • Kim H.J.
        • Kim J.
        • Cho H.
        • et al.
        Individual subject classification of mixed dementia from pure subcortical vascular dementia based on subcortical shape analysis.
        PLOS One. 2013; 8: e75602
        • Park J.H.
        • Seo S.W.
        • Kim C.
        • et al.
        Effects of cerebrovascular disease and amyloid beta burden on cognition in subjects with subcortical vascular cognitive impairment.
        Neurobiol Aging. 2014; 35: 254-260
        • Gauthier S.
        • Reisberg B.
        • Zaudig M.
        • et al.
        Mild cognitive impairment.
        Lancet. 2006; 367: 1262-1270
        • Petersen R.C.
        • Lopez O.
        • Armstrong M.J.
        • et al.
        Practice guideline update summary: mild cognitive impairment.
        Neurology. 2018; 90: 1-10
        • McKhann G.M.
        • Knopman D.S.
        • Chertkow H.
        • et al.
        The diagnosis of dementia due to Alzehimer’s disease: recommendations from the National Institute on Aging – Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease.
        Alzheimers Dement. 2011; 7: 263-269
        • Albert M.S.
        • Dekosky S.T.
        • Dickson D.
        • et al.
        The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging – Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease.
        Alzheimers Dement. 2011; 7: 270-279
        • Sperling R.A.
        • Aisen P.
        • Beckett L.
        • et al.
        Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging – Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease.
        Alzheimers Dement. 2011; 7: 280-292
        • Gauthier S.
        • Patterson C.
        • Chertkow H.
        • et al.
        4th Canadian consensus conference on the diagnosis and treatment of dementia.
        Can J Neurol Sci. 2012; 39: S1-S8
        • Jack C.R.
        • Bennett D.A.
        • Blennow K.
        • et al.
        NIA-AA research framework: toward a biological definition of Alzheimer’s disease.
        Alzheimers Dement. 2017; 14: 535-562
        • Hoffman J.M.
        • Welsh-Bohmer K.A.
        • Hanson M.
        • et al.
        FDG PET imaging in patients with pathologically verified dementia.
        J Nucl Med. 2000; 41: 1920-1928
        • Rice L.
        • Bisdas S.
        The diagnostic value of FDG and amyloid PET in Alzheimer’s disease – a systematic review.
        Eur J Radiol. 2017; 94: 16-24
        • Clark C.M.
        • Pontecorvo M.J.
        • Beach T.G.
        • et al.
        Cerebral PET with florbetapir compared with neuropathology at autopsy for detection of neuritic amyloid-β plaques: a prospective cohort study.
        Lancet Neurol. 2012; 11: 669-678
        • Laforce Jr., R.
        • Rosa-Neto P.
        • Soucy J.P.
        • et al.
        Canadian Consensus guidelines on use of amyloid imaging in Canada: update and future directions from the specialized task force on amyloid imaging in Canada.
        Can J Neurol Sci. 2016; 43: 503-512
        • Minoshima S.
        • Drzezga A.E.
        • Barthel H.
        • et al.
        SNMMI procedure standard/EANM practice guideline for amyloid PET imaging of the brain 1.0.
        J Nucl Med. 2016; 57: 1316-1322
        • Uribe C.F.
        • Mathotaarachchi S.
        • Gaudet V.
        • et al.
        Machine learning in nuclear medicine: part 1—introduction.
        J Nucl Med. 2019; 60: 451-458
        • Zukotynski K.
        • Gaudet V.
        • Uribe C.F.
        • et al.
        Machine learning in nuclear medicine: part 2—neural networks and clinical aspects.
        J Nucl Med. 2021; 62: 22-29
        • Zukotynski K.
        • Gaudet V.
        • Kuo P.H.
        • et al.
        The use of random forests to identify brain regions on amyloid and FDG PET associated with MoCA score.
        Clin Nucl Med. 2020; 45: 427-433
        • Zhao K.
        • Zhou L.
        • Gao S.
        • et al.
        Study of low-dose PET image recovery using supervised learning with CycleGAN.
        PLOS ONE. 2020; 15: e0238455
        • Wolterink J.M.
        • Leiner T.
        • Viergever M.A.
        • et al.
        Generative adversarial networks for noise reduction in low-dose CT.
        IEEE T Med Imaging. 2017; 36: 2536-2545
        • Ronneberger O.
        • Fischer P.
        • Brox T.
        U-Net: convolutional networks for biomedical image segmentation.
        MICCAI. 2015; : 234-241