Advertisement

Role of PET/Computed Tomography in Elderly Thyroid Cancer

Tumor Biology and Clinical Management
Published:October 27, 2022DOI:https://doi.org/10.1016/j.cpet.2022.09.005

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to PET Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Girardi F.M.
        Thyroid carcinoma pattern presentation according to age.
        Int Arch Otorhinolaryngol. 2017; 21: 38-41
        • Noone A.M.
        • Howlader N.
        • Krapcho M.
        • et al.
        SEER cancer statistics review, 1975-2015. National Cancer Institute, Bethesda, MD2018 (Available at:) (Accessed 13 September 2022)
        • Fagin J.A.
        • Wells Jr., S.A.
        Biologic and clinical perspectives on thyroid cancer.
        N Engl J Med. 2016; 375: 1054-1067
        • Nixon I.J.
        • Wang L.Y.
        • Migliacci J.C.
        • et al.
        An international multi-institutional validation of age 55 Years as a cutoff for risk stratification in the AJCC/UICC staging system for well-differentiated thyroid cancer.
        Thyroid. 2016; 26: 373-380
        • Koshkina A.
        • Fazelzad R.
        • Sugitani I.
        • et al.
        Association of patient Age with progression of low-risk papillary thyroid carcinoma under active surveillance: a systematic review and meta-analysis.
        JAMA Otolaryngol Head Neck Surg. 2020; 146: 552-560
        • Zambeli-Ljepović A.
        • Wang F.
        • Dinan M.A.
        • et al.
        Low-risk thyroid cancer in elderly: total thyroidectomy/RAI predominates but lacks survival advantage.
        J Surg Res. 2019; 243 (Epub 2019 Jun 8. PMID: 31185435; PMCID: PMC6773493): 189-197
        • Poma A.M.
        • Macerola E.
        • Basolo A.
        • et al.
        Fine-needle aspiration cytology and histological types of thyroid cancer in the elderly: evaluation of 9070 patients from a single referral centre.
        Cancers (Basel). 2021; 13 (PMCID: PMC7926485): 907
        • Wang Z.
        • Vyas C.M.
        • Van Benschoten O.
        • et al.
        Quantitative analysis of the benefits and risk of thyroid nodule evaluation in patients ≥70 Years old.
        Thyroid. 2018; 28 (PubMed): 465-471
        • Lechner M.G.
        • Hershman J.M.
        Thyroid nodules and cancer in the elderly.
        in: Feingold K.R. Anawalt B. Boyce A. Endotext [internet]. MDText.com, Inc., South Dartmouth (MA)2000 (Available at:)
        • Chereau N.
        • Trésallet C.
        • Noullet S.
        • et al.
        Prognosis of papillary thyroid carcinoma in elderly patients after thyroid resection: a retrospective cohort analysis.
        Medicine (Baltimore). 2016; 95 ([PMC free article] [PubMed]): e5450
        • Lin J.D.
        • Chao T.C.
        • Chen S.T.
        • et al.
        Characteristics of thyroid carcinomas in aging patients.
        Eur J Clin Invest. 2000; 30: 147-153
        • Payne R.J.
        • Bastianelli M.
        • Mlynarek A.M.
        • et al.
        Is age associated with risk of malignancy in thyroid cancer?.
        Otolaryngol Head Neck Surg. 2014; 151 (PubMed): 746-750
        • Lennard C.M.
        • Patel A.
        • Wilson J.
        • et al.
        Intensity of vascular endothelial growth factor expression is associated with increased risk of recurrence and decreased disease-free survival in papillary thyroid cancer.
        Surgery. 2001; 129: 552-558
        • Godballe C.
        • Asschenfeldt P.
        • Jørgensen K.E.
        • et al.
        Prognostic factors in papillary and follicular thyroid carcinomas: p53 expression is a significant indicator of prognosis.
        Laryngoscope. 1998; 108: 243-249
        • Brierley J.D.
        • Gospodarowicz M.K.
        • Wittekind C.
        TNM classification of malignant tumours.
        8th ed. John Wiley & Sons, Weinheim, Germany2017: 69-71
        • Hay I.D.
        • Bergstralh E.J.
        • Goellner J.R.
        • et al.
        Predicting outcome in papillary thyroid carcinoma: development of a reliable prognostic scoring system in a cohort of 1779 patients surgically treated at one institution during 1940 through 1989.
        Surgery. 1993; 114: 1050-1057
        • Davis N.L.
        • Bugis S.P.
        • McGregor G.I.
        • et al.
        An evaluation of prognostic scoring systems in patients with follicular thyroid cancer.
        Am J Surg. 1995; 170: 476-480
        • Ylli D.
        • Burman K.D.
        • Van Nostrand D.
        • et al.
        Eliminating the age cutoff in staging of differentiated thyroid cancer: the safest road?.
        J Clin Endocrinol Metab. 2018; 103: 1813-1817
        • Ito Y.
        • Miyauchi A.
        • Jikuzono T.
        • et al.
        Risk factors contributing to a poor prognosis of papillary thyroid carcinoma: validity of UICC/AJCC TNM classification and stage grouping.
        World J Surg. 2007; 31: 838-848
        • Sugino K.
        • Ito K.
        • Nagahama M.
        • et al.
        Prognosis and prognostic factors for distant metastases and tumor mortality in follicular thyroid carcinoma.
        Thyroid. 2011; 21: 751-757
        • Halnan K.E.
        Influence of age and sex on incidence and prognosis of thyroid cancer.
        Cancer. 1966; 19: 1534-1536
        • Cady B.
        • Sedgwick C.E.
        • Meissner W.A.
        • et al.
        Risk factor analysis in differentiated thyroid cancer.
        Cancer. 1979; 43: 810-820
        • Orosco R.K.
        • Hussain T.
        • Brumund K.T.
        • et al.
        Analysis of age and disease status as predictors of thyroid cancer-specific mortality using the Surveillance, Epidemiology, and End Results database.
        Thyroid. 2015; 25: 125-132
        • Kauffmann R.M.
        • Hamner J.B.
        • Ituarte P.H.G.
        • et al.
        Age greater than 60 years portends a worse prognosis in patients with papillary thyroid cancer: should there be three age categories for staging?.
        BMC Cancer18. 2018; 316https://doi.org/10.1186/s12885-018-4181-4
        • Natalya Rukhman& Alan Silverberg
        Thyroid cancer in older men.
        Aging Male. 2011; 14: 91-98
        • Ganly I.
        • Nixon I.J.
        • Wang L.Y.
        • et al.
        Survival from differentiated thyroid cancer: what has age got to do with it?.
        Thyroid. 2015; 25: 1106-1114
        • Ito Y.
        • Kudo T.
        • Takamura Y.
        • et al.
        Prognostic factors of papillary thyroid carcinoma vary according to sex and patient age.
        World J Surg. 2011; 35: 2684-2690
        • Urhan M.
        • Basu S.
        • Alavi A.
        PET scan in thyroid cancer.
        PET Clin. 2012; 7 (Epub 2012 Aug 24. PMID: 27157651): 453-461
        • Nascimento C.
        • Borget I.
        • Al Ghuzlan A.
        • et al.
        Postoperative fluorine-18-fluorodeoxyglucose positron emission tomography/computed tomography: an important imaging modality in patients with aggressive histology of differentiated thyroid cancer.
        Thyroid. 2015; 25 (Epub 2015 Mar 16. PMID: 25633259): 437-444
        • Karantanis D.
        • Bogsrud T.V.
        • Wiseman G.A.
        • et al.
        Clinical significance of diffusely increased 18F-FDG uptake in the thyroid gland.
        J Nucl Med. 2007; 48: 896-901
        • Nilsson I.L.
        • Arnberg F.
        • Zedenius J.
        • et al.
        Thyroid incidentaloma detected by fluorodeoxyglucose positron emission tomography/computed tomography: practical management algorithm.
        World J Surg. 2011; 35: 2691-2697
        • Ladrón de Guevara H.D.
        • Munizaga M.C.
        • García S.N.
        • et al.
        Frecuencia de malignidaden incidentalomas tiroideosdetectados con tomografíaporemisión de positrones/tomografíacomputada (PET/CT) con F18-FDG de cuerpoentero [Frequency of malignancy in thyroid incidentalomas detected by whole body 18F-FDG PET/CT].
        Rev Med Chil. 2020; 148 (Spanish. doi: . PMID: 32730431): 10-16
        • Soelberg K.K.
        • Bonnema S.J.
        • Brix T.H.
        • et al.
        Risk of malignancy in thyroid incidentalomas detected by 18F-fluorodeoxyglucose positron emission tomography: a systematic review.
        Thyroid. 2012; 22: 918
        • Sollini M.
        • Cozzi L.
        • Pepe G.
        • et al.
        [18F]FDG-PET/CT texture analysis in thyroid incidentalomas: preliminary results.
        Eur J Hybrid Imaging. 2017; 1 (Epub 2017 Oct 12. PMID: 29782578; PMCID: PMC5954705): 3
        • Wiebel J.L.
        • Esfandiari N.H.
        • Papaleontiou M.
        • et al.
        Evaluating positron emission tomography use in differentiated thyroid cancer.
        Thyroid. 2015; 25 (Epub 2015 Aug 3. PMID: 26133765; PMCID: PMC4560853): 1026-1032
        • Poisson T.
        • Deandreis D.
        • Leboulleux S.
        • et al.
        18F-fluorodeoxyglucose positron emission tomography and computed tomography in anaplastic thyroid cancer.
        Eur J Nucl Med Mol Imaging. 2010; 37 ([Crossref][Medline][Google Scholar]): 2277-2285
        • Smallridge R.C.
        • Ain K.B.
        • Asa S.L.
        • et al.
        American Thyroid Association guidelines for management of patients with anaplastic thyroid cancer.
        Thyroid. 2012; 22: 1104-1139
        • Schütz F.
        • Lautenschläger C.
        • Lorenz K.
        • et al.
        Positron emission tomography (PET) and PET/CT in thyroid cancer: a systematic review and meta-analysis.
        Eur Thyroid J. 2018; 7 (Epub 2017 Oct 24. PMID: 29594049; PMCID: PMC5836193): 13-20
        • Pacini F.
        • Castagna M.G.
        • Brilli L.
        • et al.
        Thyroid cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up.
        Ann Oncol. 2012; 23: vii110-vii119
        • GrabellusF N.J.
        • BockischA S.K.W.
        • SheuSY
        Glucose transporter 1 expression, tumor proliferation, and iodine/glucose uptake in thyroid cancer with emphasis on poorly differentiated thyroid carcinoma.
        Clin Nucl Med. 2012; 37: 121-127
        • Kuo C.S.
        • Tang K.T.
        • Lin J.D.
        • et al.
        Diffuse sclerosing variant of papillary thyroid carcinoma with multiple metastases and elevated serum carcinoembryonic antigen level.
        Thyroid. 2012; 22 (View at: Publisher Site | Google Scholar): 1187-1190
        • Giovanella L.
        • Fasolini F.
        • Suriano S.
        • et al.
        Hyperfunctioning solid/trabecular follicular carcinoma of the thyroid gland.
        J Oncol. 2010; 2010: 4
        • Diehl M.
        • Graichen S.
        • Menzel C.
        • et al.
        F-18 FDG PET in insular thyroid cancer.
        Clin Nucl Med. 2003; 28 (View at: Publisher Site): 728-731
        • Deandreis D.
        • Al Ghuzlan A.
        • Leboulleux S.
        • et al.
        Do histological, immunohistochemical, and metabolic (radioiodine and fluorodeoxyglucose uptakes) patterns of metastatic thyroid cancer correlate with patient outcome?.
        Endocrine-Related Cancer. 2011; 18 (View at: Publisher Site | Google Scholar): 159-169
        • Treglia G.
        • Annunziata S.
        • Muoio B.
        • et al.
        The role of fluorine-18-fluorodeoxyglucose positron emission tomography in aggressive histological subtypes of thyroid cancer: an overview.
        Int J Endocrinol. 2013; 2013 (Epub 2013 Apr 9. PMID: 23653645; PMCID: PMC3638656): 856189
        • Yadav D.
        • Shah K.
        • Naidoo K.
        • et al.
        PET/Computed tomography in thyroid cancer.
        Neuroimaging Clin N Am. 2021; 31: 345-357
        • Treglia G.
        • Bertagna F.
        • Piccardo A.
        • et al.
        131I whole-body scan or 18FDG PET/CT for patients with elevated thyroglobulin and negative ultrasound?.
        Clin Translat Imaging. 2013; 1 ([Crossref][Google Scholar]): 175-183
        • Jeong Won L.
        • Sang Mi L.
        • Dae Ho L.
        • et al.
        Clinical utility of 18F-FDG PET/CT concurrent with 131I therapy in intermediate–to–high-risk patients with differentiated thyroid cancer: dual-center experience with 286 patients.
        J Nucl Med August. 2013; 54: 1230-1236
        • Khan N.
        • Oriuchi N.
        • Higuchi T.
        • et al.
        PET in the follow-up of differentiated thyroid cancer.
        Br J Radiol. 2003; 76: 690-695
        • Razfar A.
        • Branstetter BF4th.
        • Christopoulos A.
        • et al.
        Clinical usefulness of positron emission tomography-computed tomography in recurrent thyroid carcinoma.
        Arch Otolaryngol Head Neck Surg. 2010; 136: 120-125
        • Abraham T.
        • Schoder H.
        Thyroid cancer: indications and opportunities for positron emission tomography/computed tomography imaging.
        Semin Nucl Med. 2011; 41 ([Crossref][Medline][Google Scholar]): 121-138
        • Saif M.W.
        • Tzannou I.
        • Makrilia N.
        • et al.
        Role and cost effectiveness of PET/CT in management of patients with cancer.
        Yale J Biol Med. 2010; 83 ([Medline]): 53-65
        • Cooper D.S.
        • Doherty G.M.
        • Haugen B.R.
        • et al.
        Revised American thyroid association management guidelines for patients with thyroid nodules and differentiated thyroid cancer.
        Thyroid. 2009; 19 (View at: Publisher Site | Google Scholar): 1167-1214
        • Robbins R.J.
        • Wan Q.
        • Grewal R.K.
        • et al.
        Real-time prognosis for metastatic thyroid carcinoma based on 2-[18F]fluoro-2-deoxy-D-glucose-positron emission tomography scanning.
        J Clin Endocrinol Metab. 2006; 91: 498-505
        • Kebebew E.
        • Greenspan F.S.
        • Clark O.H.
        • et al.
        Anaplastic thyroid carcinoma. Treatment outcome and prognostic factors.
        Cancer. 2005; 103: 1330
        • Nagaiah G.
        • Hossain A.
        • Mooney C.J.
        • et al.
        Anaplastic thyroid cancer: a review of epidemiology, pathogenesis, and treatment.
        J Oncol. 2011; 2011: 542358
        • Mosci C.
        • Iagaru A.
        PET/CT imaging of thyroid cancer.
        Clin Nucl Med. 2011; 36: e180-e185
        • Treglia G.
        • Muoio B.
        • Giovanella L.
        • et al.
        The role of positron emission tomography and positron emission tomography/computed tomography in thyroid tumours: an overview.
        Eur Arch Otorhinolaryngol. 2013; 270: 1783-1787
        • Bogsrud T.V.
        • Karantanis D.
        • Nathan M.A.
        • et al.
        18F-FDG PET in the management of patients with anaplastic thyroid carcinoma.
        Thyroid. 2008; 18: 713-719
        • Civan C.
        • Isik E.G.
        • Simsek D.H.
        Metastatic poorly differentiated thyroid cancer with heterogeneous distribution of 18F-FDG, 68Ga-DOTATATE, and 68Ga-PSMA on PET/CT.
        Clin Nucl Med. 2021; 46 (PMID: 33156050): e212-e213
        • Basu S.
        • Parghane R.V.
        • Naik C.
        Clinical efficacy of 177Lu-DOTATATE peptide receptor radionuclide therapy in thyroglobulin-elevated negative iodine scintigraphy: a "not-so-promising" result compared with GEP-NETs.
        World J Nucl Med. 2020; 19 (PMID: 33354174; PMCID: PMC7745860): 205-210
        • Kiess A.P.
        • Banerjee S.R.
        • Mease R.C.
        • et al.
        Prostate-specific membrane antigen as a target for cancer imaging and therapy.
        Q J Nucl Med Mol Imaging. 2015; 59: 241-268
        • Iwano S.
        • Kato K.
        • Ito S.
        • et al.
        FDG-PET performed concurrently with initial I-131 ablation for differentiated thyroid cancer.
        Ann Nucl Med. 2012; 26 (Epub 2011 Dec 10. PMID: 22160654): 207-213
        • Shie P.
        • Cardarelli R.
        • Sprawls K.
        • et al.
        Systematic review: prevalence of malignant incidental thyroid nodules identified on fluorine-18 fluorodeoxyglucose positron emission tomography.
        Nucl Med Commun. 2009; 30 ([Crossref][Medline][Google Scholar]): 742-748
        • Grünwald F.
        • Menzel C.
        • Bender H.
        • et al.
        Comparison of 18FDG-PET with 131iodine and 99mTc-sestamibi scintigraphy in differentiated thyroid cancer.
        Thyroid. 1997; 7 ([Crossref][Medline][Google Scholar]): 327-335
        • Freudenberg L.S.
        • Antoch G.
        • Jentzen W.
        • et al.
        Value of 124I-PET/CT in staging of patients with differentiated thyroid cancer.
        EurRadiol. 2004; 14: 2092-2098
        • Lubberink M.
        • Abdul Fatah S.
        • Brans B.
        • et al.
        The role of 124I-PET in diagnosis and treatment of thyroid carcinoma.
        Q J Nucl Med Mol Imaging. 2008; 52: 30-36
        • Budiawan H.
        • Salavati A.
        • Kulkarni H.R.
        • et al.
        Peptide receptor radionuclide therapy of treatment-refractory metastatic thyroid cancer using (90)Yttrium and (177)Lutetium labeled somatostatin analogs: toxicity, response and survival analysis.
        Am J Nucl Med Mol Imaging. 2013; 4: 39-52
        • Versari A.
        • Sollini M.
        • Frasoldati A.
        • et al.
        Differentiated thyroid cancer: a new perspective with radiolabeled somatostatin analogues for imaging and treatment of patients.
        Thyroid. 2014; 24: 715-726
        • Görges R.
        • Kahaly G.
        • Müller-Brand J.
        • et al.
        Radionuclide-labeled somatostatin analogues for diagnostic and therapeutic purposes in nonmedullary thyroid cancer.
        Thyroid. 2001; 11: 647-659
        • Mourato F.A.
        • Almeida M.A.
        • Brito A.E.
        • et al.
        FDG PET/CT versus somatostatin receptor PET/CT in TENIS syndrome: a systematic review and meta-analysis.
        Clin Transl Imaging. 2020; 8: 365-375
        • Chang S.S.
        • Reuter V.E.
        • Heston W.D.
        • et al.
        Five different anti-prostate specific membrane antigen (PSMA) antibodies confirm PSMA expression in tumor-associated neovasculature.
        Cancer Res. 1999; 59: 3192-3198
        • Wächter S.
        • Di Fazio P.
        • Maurer E.
        • et al.
        Prostate-specific membrane antigen in anaplastic and poorly differentiated thyroid cancer-A new diagnostic and therapeutic target?.
        Cancers (Basel). 2021; 13: 5688
        • Sollini M.
        • di Tommaso L.
        • Kirienko M.
        • et al.
        PSMA expression level predicts differentiated thyroid cancer aggressiveness and patient outcome.
        EJNMMI Res. 2019; 9: 93
        • Folkman J.
        Tumor angiogenesis.
        in: Mendelsohn J. Howley P. Liotta L. The molecular basis of cancer. WB Saunders, Philadelphia, PA, USA1995: 206-232
        • Ribatti D.
        • Vacca A.
        • Dammacco F.
        The role of the vascular phase in solid tumor growth: a historical review.
        Neoplasia. 1999; 1: 293-302
        • Ramsden J.D
        Angiogenesis in the thyroid gland.
        J. Endocrinol. 2000; 166: 475-480
        • Sprindzuk M.V.
        Angiogenesis in malignant thyroid tumors.
        World J Oncol. 2010; 1: 221-231
        • Mousa S.A.
        • Lin H.-Y.
        • Tang H.Y.
        • et al.
        Modulation of angiogenesis by thyroid hormone and hormone analogues: implications for cancer management.
        Angiogenesis. 2014; 17: 463-469
        • De La Torre N.G.
        • Buley I.
        • Wass J.A.H.
        • et al.
        Angiogenesis and lymphangiogenesis in thyroid proliferative lesions: relationship to type and tumour behaviour.
        Endocr.-Relat Cancer. 2006; 13: 931-944
        • Pierotti M.A.
        • Bongarzone I.
        • Borello M.G.
        • et al.
        Cytogenetics and molecular genetics of carcinomas arising from thyroid epithelial follicular cells.
        Genes Chromosomes Cancer. 1996; 16: 1-14
        • Parihar A.S.
        • Mittal B.R.
        • Kumar R.
        • et al.
        68Ga-DOTA-RGD2 positron emission tomography/computed tomography in radioiodine refractory thyroid cancer: prospective comparison of diagnostic accuracy with 18F-FDG positron emission tomography/computed tomography and evaluation toward potential theranostics.
        Thyroid. 2020; 30: 557-567
        • O'Doherty J.
        • Jauregui-Osoro M.
        • Brothwood T.
        • et al.
        18F-Tetrafluoroborate, a PET probe for imaging sodium/iodide symporter expression: whole-body biodistribution, safety, and radiation dosimetry in thyroid cancer patients.
        J Nucl Med. 2017; 58: 1666-1671
        • Jiang H.
        • DeGrado T.R.
        [18F]Tetrafluoroborate ([18F]TFB) and its analogs for PET imaging of the sodium/iodide symporter.
        Theranostics. 2018; 8: 3918-3931
        • Samnick S.
        • Al-Momani E.
        • Schmid J.S.
        • et al.
        Initial clinical investigation of [18F]tetrafluoroborate PET/CT in comparison to [124I]iodine PET/CT for imaging thyroid cancer.
        Clin Nucl Med. 2018; 43 (PMID: 29356744): 162-167
        • Dittmann M.
        • Gonzalez Carvalho J.M.
        • Rahbar K.
        • et al.
        Incremental diagnostic value of [18F]tetrafluoroborate PET-CT compared with [131I]iodine scintigraphy in recurrent differentiated thyroid cancer.
        Eur J Nucl Med Mol Imaging. 2020; 47 (Epub 2020 Apr 4. PMID: 32248325; PMCID: PMC7515952): 2639-2646
        • Ballal S.
        • Yadav M.P.
        • Moon E.S.
        • et al.
        Biodistribution, pharmacokinetics, dosimetry of [68Ga]Ga-DOTA.SA.FAPi, and the head-to-head comparison with [18F]F-FDG PET/CT in patients with various cancers.
        Eur J Nucl Med Mol Imaging. 2021; 48 (Epub 2020 Nov 26. PMID: 33244617): 1915-1931
        • Blau M.
        • Nagler W.
        • Bender M.A.
        A new isotope for bone scanning.
        J Nucl Med. 1962; 3: 332-334
        • Groves A.M.
        • Win Th
        • Ben Haim S.
        • et al.
        Non-[18F]FDG PET in clinical oncology.
        Lancet Oncol. 2007; 8: 822-830
        • Even-Sapir E.
        • Metser U.
        • Flusser G.
        • et al.
        Assessment of malignant skeletal disease with 18F-fluoride PET/CT.
        J Nucl Med. 2004; 45: 272-278
        • Beuthien-Baumann B.
        • Strumpf A.
        • Zessin J.
        • et al.
        Diagnostic impact of PET with 18F-FDG, 18F-DOPA and 3-O-methyl-6-[18F]fluoro-DOPA in recurrent or metastatic medullary thyroid carcinoma.
        Eur J Nucl Med Mol Imaging. 2007; 34 ([Crossref][Medline][Google Scholar]): 1604-1609
        • Kauhanen S.
        • Seppänen M.
        • Ovaska J.
        • et al.
        The clinical value of [18F]fluoro-dihydroxyphenylalanine positron emission tomography in primary diagnosis, staging, and restaging of neuroendocrine tumors.
        EndocrRelat Cancer. 2009; 16 ([Crossref][Medline][Google Scholar]): 255-265
        • Treglia G.
        • Villani M.F.
        • Giordano A.
        • et al.
        Detection rate of recurrent medullary thyroid carcinoma using fluorine-18 fluorodeoxyglucose positron emission tomography: a meta-analysis.
        Endocrine. 2012; 42 (Epub 2012 Apr 17. PMID: 22527889): 535-545
        • Bogsrud T.V.
        • Karantanis D.
        • Nathan M.A.
        • et al.
        The prognostic value of 2-deoxy-2-[18F]fluoro-D-glucose positron emission tomography in patients with suspected residual or recurrent medullary thyroid carcinoma.
        Mol Imaging Biol. 2010; 12 (Epub 2009 Dec 1. PMID: 19949985): 547-553
        • Slavikova K.
        • Montravers F.
        • Treglia G.
        • et al.
        What is currently the best radiopharmaceutical for the hybrid PET/CT detection of recurrent medullary thyroid carcinoma?.
        Curr Radiopharm. 2013; 6
        • Verbeek H.H.G.
        • Plukker J.T.M.
        • Koopmans K.P.
        • et al.
        Clinical relevance of 18F-FDG PET and 18F-DOPA PET in recurrent medullary thyroid carcinoma.
        J Nucl Med. 2012; 53: 1863-1871
        • Beheshti M.
        • Pöcher S.
        • Vali R.
        • et al.
        The value of 18F-DOPA PET-CT in patients with medullary thyroid carcinoma: comparison with 18F-FDG PET-CT.
        EurRadiol. 2009; 19 ([Crossref][Medline][Google Scholar]): 1425-1434
        • Conry B.G.
        • Papathanasiou N.D.
        • Prakash V.
        • et al.
        Comparison of 68Ga-DOTATATE and 18F-fluorodeoxyglucose PET/CT in the detection of recurrent medullary thyroid carcinoma.
        Eur J Nucl Med Mol Imaging. 2010; 37 ([Crossref][Medline][Google Scholar]): 49-57
        • Treglia G.
        • Castaldi P.
        • Villani M.F.
        • et al.
        Comparison of 18F-DOPA, 18F-FDG and 68Ga-somatostatin analogue PET/CT in patients with recurrent medullary thyroid carcinoma.
        Eur J Nucl Med Mol Imaging. 2012; 39 ([Crossref][Medline][Google Scholar]): 569-580
        • Reubi J.C.
        Targeting CCK receptors in human cancers.
        Curr Top Med Chem. 2007; 7: 1239-1242
        • Bläker M.
        • de Weerth A.
        • Tometten M.
        • et al.
        Expression of the cholecystokinin 2-receptor in normal human thyroid gland and medullary thyroid carcinoma.
        Eur J Endocrinol. 2002; 146: 89-96
        • Von Guggenberg E.
        • Rangger C.
        • Sosabowski J.
        • et al.
        Preclinical evaluation of radiolabeled DOTA-derivatized cyclic minigastrin analogs for targeting cholecystokinin receptor expressing malignancies.
        Mol Imaging Biol. 2012; 14: 366-375
        • Santhanam P.
        • Solnes L.B.
        • Rowe S.P.
        Molecular imaging of advanced thyroid cancer: iodinated radiotracers and beyond.
        Med Oncol. 2017; 34 (Erratum in: Med Oncol. 2017 Dec 12;35(1):10. PMID: 29086115): 189
        • Jang H.W.
        • Choi J.Y.
        • Lee J.I.
        • et al.
        Localization of medullary thyroid carcinoma after surgery using (11)C-methionine PET/CT: comparison with (18)F-FDG PET/CT.
        Endocr J. 2010; 57: 1045-1054
        • Bodet-Milin C.
        • Faivre-Chauvet A.
        • Carlier T.
        • et al.
        Immuno-PET using anticarcinoembryonic antigen bispecific antibody and 68Ga-labeled peptide in metastatic medullary thyroid carcinoma: clinical optimization of the pretargeting parameters in a first-in-human trial.
        J Nucl Med. 2016; 57: 1505-1511
        • Graff-Baker A.
        • Roman S.A.
        • Thomas D.C.
        • et al.
        Prognosis of primary thyroid lymphoma: demographic, clinical, and pathologic predictors of survival in 1,408 cases.
        Surgery. 2009; 146: 1105-1115
        • Ruggiero F.P.
        • Frauenhoffer E.
        • Stack B.C.
        Thyroid lymphoma: a single institution’s experience.
        Otolaryngol Neck Surg. 2005; 133: 888-896
        • Basu S.
        • Li G.
        • Bural G.
        • et al.
        Fluorodeoxyglucose positron emission tomography (FDG-PET) and PET/computed tomography imaging characteristics of thyroid lymphoma and their potential clinical utility.
        Acta Radiol Stockh Swed 1987. 2009; 50: 201-204