Advertisement

Assessing Coronary Artery and Aortic Calcification in Patients with Prostate Cancer Using 18F-Sodium Fluoride PET/Computed Tomography

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to PET Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Benjamin E.J.
        • Muntner P.
        • Alonso A.
        • et al.
        Heart disease and stroke statistics-2019 update: a report from the american heart association.
        Circulation. 2019; 139: e56-e528
        • McMillan D.E.
        Blood flow and the localization of atherosclerotic plaques.
        Stroke. 1985; 16: 582-587
        • Tapia-Vieyra J.V.
        • Delgado-Coello B.
        • Mas-Oliva J.
        Atherosclerosis and cancer; a resemblance with far-reaching implications.
        Arch Med Res. 2017; 48: 12-26
        • Ross J.S.
        • Stagliano N.E.
        • Donovan M.J.
        • et al.
        Atherosclerosis and cancer: common molecular pathways of disease development and progression.
        Ann N Y Acad Sci. 2001; 947 ([discussion: 292-273]): 271-292
        • Steinl D.C.
        • Kaufmann B.A.
        Ultrasound imaging for risk assessment in atherosclerosis.
        Int J Mol Sci. 2015; 16: 9749-9769
        • Kramer C.M.
        • Anderson J.D.
        MRI of atherosclerosis: diagnosis and monitoring therapy.
        Expert Rev Cardiovasc Ther. 2007; 5: 69-80
        • Blomberg B.A.
        • de Jong P.A.
        • Thomassen A.
        • et al.
        Thoracic aorta calcification but not inflammation is associated with increased cardiovascular disease risk: results of the CAMONA study.
        Eur J Nucl Med Mol Imaging. 2017; 44: 249-258
        • Irkle A.
        • Vesey A.T.
        • Lewis D.Y.
        • et al.
        Identifying active vascular microcalcification by (18)F-sodium fluoride positron emission tomography.
        Nat Commun. 2015; 6: 7495
        • Fonager R.F.
        • Zacho H.D.
        • Langkilde N.C.
        • et al.
        Diagnostic test accuracy study of (18)F-sodium fluoride PET/CT, (99m)Tc-labelled diphosphonate SPECT/CT, and planar bone scintigraphy for diagnosis of bone metastases in newly diagnosed, high-risk prostate cancer.
        Am J Nucl Med Mol Imaging. 2017; 7: 218-227
        • Fiz F.
        • Morbelli S.
        • Piccardo A.
        • et al.
        1)(8)F-NaF uptake by atherosclerotic plaque on PET/CT imaging: inverse correlation between calcification density and mineral metabolic activity.
        J Nucl Med. 2015; 56: 1019-1023
        • Mick C.G.
        • James T.
        • Hill J.D.
        • et al.
        Molecular imaging in oncology: (18)F-sodium fluoride PET imaging of osseous metastatic disease.
        AJR Am J Roentgenol. 2014; 203: 263-271
        • Al-Zaghal A.
        • Aras M.
        • Borja A.J.
        • et al.
        Detection of pulmonary artery atherosclerosis by FDG-PET/CT: a new observation.
        Am J Nucl Med Mol Imaging. 2020; 10: 127-134
        • Alavi A.
        • Werner T.J.
        • Raynor W.
        • et al.
        Critical review of PET imaging for detection and characterization of the atherosclerotic plaques with emphasis on limitations of FDG-PET compared to NaF-PET in this setting.
        Am J Nucl Med Mol Imaging. 2021; 11: 337-351
        • Arani L.S.
        • Zirakchian Zadeh M.
        • Saboury B.
        • et al.
        Assessment of atherosclerosis in multiple myeloma and smoldering myeloma patients using (18)F- sodium fluoride PET/CT.
        J Nucl Cardiol. 2021; 28: 3044-3054
        • Asadollahi S.
        • Rojulpote C.
        • Bhattaru A.
        • et al.
        Comparison of atherosclerotic burden in non-lower extremity arteries in patients with and without peripheral artery disease using (18)F-NaF-PET/CT imaging.
        Am J Nucl Med Mol Imaging. 2020; 10: 272-278
        • Bhattaru A.
        • Rojulpote C.
        • Gonuguntla K.
        • et al.
        An understanding of the atherosclerotic molecular calcific heterogeneity between coronary, upper limb, abdominal, and lower extremity arteries as assessed by NaF PET/CT.
        Am J Nucl Med Mol Imaging. 2021; 11: 40-45
        • Blomberg B.A.
        • Thomassen A.
        • de Jong P.A.
        • et al.
        Impact of personal characteristics and technical factors on quantification of sodium 18F-Fluoride uptake in human arteries: prospective evaluation of healthy subjects.
        J Nucl Med. 2015; 56: 1534-1540
        • Borja A.J.
        • Bhattaru A.
        • Rojulpote C.
        • et al.
        Association between atherosclerotic cardiovascular disease risk score estimated by pooled cohort equation and coronary plaque burden as assessed by NaF-PET/CT.
        Am J Nucl Med Mol Imaging. 2020; 10: 312-318
        • Borja A.J.
        • Rojulpote C.
        • Hancin E.C.
        • et al.
        An update on the role of total-body PET imaging in the evaluation of atherosclerosis.
        PET Clin. 2020; 15: 477-485
        • Brodsky L.
        • Chesnais H.
        • Piri R.
        • et al.
        Association of baseline subject characteristics with changes in coronary calcification assessed by (18)F-sodium fluoride PET/CT.
        Hell J Nucl Med. 2021; 24: 45-52
        • Castro S.A.
        • Muser D.
        • Lee H.
        • et al.
        Carotid artery molecular calcification assessed by [(18)F]fluoride PET/CT: correlation with cardiovascular and thromboembolic risk factors.
        Eur Radiol. 2021; 31: 8050-8059
        • Gonuguntla K.
        • Rojulpote C.
        • Patil S.
        • et al.
        Utilization of NaF-PET/CT in assessing global cardiovascular calcification using CHADS2 and CHADS2-VASc scoring systems in high risk individuals for cardiovascular disease.
        Am J Nucl Med Mol Imaging. 2020; 10: 293-300
        • Hancin E.C.
        • Raynor W.Y.
        • Borja A.J.
        • et al.
        Non-(18)F-FDG/(18)F-NaF radiotracers proposed for the diagnosis and management of diseases of the heart and vasculature.
        PET Clin. 2021; 16: 273-284
        • Hoilund-Carlsen P.F.
        • Piri R.
        • Constantinescu C.
        • et al.
        Atherosclerosis imaging with (18)F-sodium fluoride PET.
        Diagnostics (Basel). 2020; 10
        • Hoilund-Carlsen P.F.
        • Sturek M.
        • Alavi A.
        • et al.
        Atherosclerosis imaging with (18)F-sodium fluoride PET: state-of-the-art review.
        Eur J Nucl Med Mol Imaging. 2020; 47: 1538-1551
        • Koa B.
        • Borja A.J.
        • Yellanki D.
        • et al.
        18)F-FDG-PET/CT in the assessment of atherosclerosis in lung cancer.
        Am J Nucl Med Mol Imaging. 2021; 11: 1-9
        • Mayer M.
        • Borja A.J.
        • Hancin E.C.
        • et al.
        Imaging atherosclerosis by PET, with emphasis on the role of FDG and NaF as potential biomarkers for this disorder.
        Front Physiol. 2020; 11: 511391
        • McKenney-Drake M.L.
        • Moghbel M.C.
        • Paydary K.
        • et al.
        18)F-NaF and (18)F-FDG as molecular probes in the evaluation of atherosclerosis.
        Eur J Nucl Med Mol Imaging. 2018; 45: 2190-2200
        • Patil S.
        • Rojulpote C.
        • Gonuguntla K.
        • et al.
        Association of triglyceride to high density lipoprotein ratio with global cardiac microcalcification to evaluate subclinical coronary atherosclerosis in non-diabetic individuals.
        Am J Cardiovasc Dis. 2020; 10: 241-246
        • Paydary K.
        • Revheim M.E.
        • Emamzadehfard S.
        • et al.
        Quantitative thoracic aorta calcification assessment by (18)F-NaF PET/CT and its correlation with atherosclerotic cardiovascular disorders and increasing age.
        Eur Radiol. 2021; 31: 785-794
        • Raynor W.Y.
        • Borja A.J.
        • Rojulpote C.
        • et al.
        (18)F-sodium fluoride: an emerging tracer to assess active vascular microcalcification.
        J Nucl Cardiol. 2021; 28: 2706-2711
        • Raynor W.Y.
        • Park P.S.U.
        • Borja A.J.
        • et al.
        PET-based imaging with (18)F-FDG and (18)F-NaF to assess inflammation and microcalcification in atherosclerosis and other vascular and thrombotic disorders.
        Diagnostics (Basel). 2021; 11
        • Rojulpote C.
        • Borja A.J.
        • Zhang V.
        • et al.
        Role of (18)F-NaF-PET in assessing aortic valve calcification with age.
        Am J Nucl Med Mol Imaging. 2020; 10: 47-56
        • Rojulpote C.
        • Patil S.
        • Gonuguntla K.
        • et al.
        NaF-PET/CT global assessment in detecting and quantifying subclinical cardiac atherosclerosis and its association with blood pressure in non-dyslipidemic individuals.
        Am J Cardiovasc Dis. 2020; 10: 101-107
        • Saboury B.
        • Edenbrandt L.
        • Piri R.
        • et al.
        Alavi-carlsen calcification score (ACCS): a Simple measure of global cardiac atherosclerosis burden.
        Diagnostics (Basel). 2021; 11: 1421
        • Seraj S.M.
        • Raynor W.Y.
        • Revheim M.E.
        • et al.
        Assessing the feasibility of NaF-PET/CT versus FDG-PET/CT to detect abdominal aortic calcification or inflammation in rheumatoid arthritis patients.
        Ann Nucl Med. 2020; 34: 424-431
        • Sorci O.
        • Batzdorf A.S.
        • Mayer M.
        • et al.
        18)F-sodium fluoride PET/CT provides prognostic clarity compared to calcium and Framingham risk scoring when addressing whole-heart arterial calcification.
        Eur J Nucl Med Mol Imaging. 2020; 47: 1678-1687
        • Zhang V.
        • Borja A.J.
        • Rojulpote C.
        • et al.
        Global quantification of pulmonary artery atherosclerosis using (18)F-sodium fluoride PET/CT in at-risk subjects.
        Am J Nucl Med Mol Imaging. 2020; 10: 119-126
        • Beheshti M.
        • Mottaghy F.M.
        • Paycha F.
        • et al.
        18)F-NaF PET/CT: EANM procedure guidelines for bone imaging.
        Eur J Nucl Med Mol Imaging. 2015; 42: 1767-1777
        • Blomberg B.A.
        • Thomassen A.
        • de Jong P.A.
        • et al.
        Coronary fluorine-18-sodium fluoride uptake is increased in healthy adults with an unfavorable cardiovascular risk profile: results from the CAMONA study.
        Nucl Med Commun. 2017; 38: 1007-1014
        • Raynor W.
        • Ayubcha C.
        • Pourhassan Shamchi S.
        • et al.
        Assessing global uptake of 18F-sodium fluoride in the femoral neck: a novel quantitative technique to evaluate changes in bone turnover with age.
        J Nucl Med. 2017; 58: 1223
        • Sies H.
        Oxidative stress: oxidants and antioxidants.
        Exp Physiol. 1997; 82: 291-295
        • Suzuki M.
        • Tomoike H.
        • Sumiyoshi T.
        • et al.
        Incidence of cancers in patients with atherosclerotic cardiovascular diseases.
        Int J Cardiol Heart Vasc. 2017; 17: 11-16
        • Neugut A.I.
        • Rosenberg D.J.
        • Ahsan H.
        • et al.
        Association between coronary heart disease and cancers of the breast, prostate, and colon.
        Cancer Epidemiol Biomarkers Prev. 1998; 7: 869-873
        • Tarkin J.M.
        • Dweck M.R.
        • Evans N.R.
        • et al.
        Imaging atherosclerosis.
        Circ Res. 2016; 118: 750-769
        • Li B.
        • Li W.
        • Li X.
        • et al.
        Inflammation: a novel therapeutic target/direction in atherosclerosis.
        Curr Pharm Des. 2017; 23: 1216-1227
        • Yun M.
        • Jang S.
        • Cucchiara A.
        • et al.
        18F FDG uptake in the large arteries: a correlation study with the atherogenic risk factors.
        Semin Nucl Med. 2002; 32: 70-76
        • Dilsizian V.
        • Jadvar H.
        Science to practice: does FDG differentiate morphologically unstable from stable atherosclerotic plaque?.
        Radiology. 2017; 283: 1-3
        • Derlin T.
        • Richter U.
        • Bannas P.
        • et al.
        Feasibility of 18F-sodium fluoride PET/CT for imaging of atherosclerotic plaque.
        J Nucl Med. 2010; 51: 862-865
        • Arani L.S.
        • Gharavi M.H.
        • Zadeh M.Z.
        • et al.
        Association between age, uptake of (18)F-fluorodeoxyglucose and of (18)F-sodium fluoride, as cardiovascular risk factors in the abdominal aorta.
        Hell J Nucl Med. 2019; 22: 14-19
        • Paydary K.
        • Emamzadehfard S.
        • Gholami S.
        • et al.
        18F-NaF PET/CT quantification of vascular calcification in the thoracic aorta is associated with increasing age and presence of cardiovascular risk factors.
        J Nucl Med. 2017; 58: 298