Advertisement

Dual-Tracer PET-Computed Tomography Imaging for Precision Radio-Molecular Theranostics of Prostate Cancer

A Futuristic Perspective
Published:September 21, 2022DOI:https://doi.org/10.1016/j.cpet.2022.07.008

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to PET Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Siegel R.L.
        • Miller K.D.
        • Jemal A.
        Cancer statistics, 2020.
        CA Cancer J Clin. 2020; 70: 7-30
      1. SEER stat fact sheets: prostate. National Cancer Institute.
        (Available at:) (Accessed 5 June 2013)
        • D’Amico A.V.
        • Moul J.
        • Carroll P.R.
        • et al.
        Cancer-specificmortality after surgery or radiation for patients with clinically localized prostate cancer managed during the prostate-specific antigen era.
        J Clin Oncol. 2003; 21: 2163-2172
        • Scher H.I.
        • Halabi S.
        • Tannock I.
        • et al.
        Design and end points of clinical trials for patients withprogressive prostate cancer and castrate levels of testosterone: recommendations of the ProstateCancer Clinical Trials Working Group.
        J Clin Oncol. 2008; 26 ([PubMed: 18309951]): 1148-1159
        • Fox J.J.
        • Morris M.J.
        • Larson S.M.
        • et al.
        Developing imaging strategies for castrationresistant prostate cancer.
        Acta Oncol (Madr). 2011; 50: 39-48
        • Chen Y.
        • Sawyers C.L.
        • Scher H.I.
        Targeting the androgen receptor pathway in prostate cancer.
        Curr Opin Pharmacol. 2008; 8: 440-448
        • Han M.
        • Partin A.W.
        • Pound C.R.
        • et al.
        Long-termbiochemical disease-free and cancer-specific survival following anatomic radical retropubic prostatectomy. The 15-year Johns Hopkins experience.
        Urol Clin North Am. 2001; 28: 555-565
        • Joniau S.
        • Briganti A.
        • Gontero P.
        • et al.
        Stratification of high-riskprostate cancer into prognostic categories: a European multi- institutional study.
        Eur Urol. 2015; 67: 157-164
        • Bolla M.
        • vanPoppel H.
        • Tombal B.
        • et al.
        Postoperative radiotherapyafter radical prostatectomy for high-risk prostate cancer: long-term results of a randomised controlled trial (EORTC trial 22911).
        Lancet. 2012; 380: 2018-2027
        • Shariat S.F.
        • Kattan M.W.
        • Vickers A.J.
        • et al.
        Critical review of prostate cancer predictive tools.
        Future Oncol. 2009; 5: 1555-1584
        • Briganti A.
        • Karnes R.J.
        • Gandaglia G.
        • et al.
        Natural history of surgicallytreated high-risk prostate cancer.
        Urol Oncol. 2015; 33 (Error: Page (1631e7) is higher than LPage (13)!)
        • Ploussard G.
        • Masson-Lecomte A.
        • Beauval J.B.
        • et al.
        Radical prostatectomy for high-riskprostatecancerdefinedby preoperativecriteria:oncologicfollow-upinnational multicenterstudyin813patientsand assessment of easy-to-useprognostic substratification.
        Urology. 2011; 78: 607-613
        • Ryan C.J.
        • Smith M.R.
        • de Bono J.S.
        • et al.
        Abiraterone inmetastatic prostate cancer withoutprevious chemotherapy.
        N Englj Med. 2013; 368: 13848
        • Beer T.M.
        • Armstrong A.J.
        • Rathkopf D.E.
        • et al.
        Enzalutamide in metastatic prostate cancer beforechemotherapy.
        N Engl J Med. 2014; 371: 424-433
        • Tannock I.F.
        • de Wit R.
        • Berry W.R.
        • et al.
        Docetaxel plus prednisone or mitoxantrone plus prednisonefor advanced prostate cancer.
        N Engl J Med. 2004; 351: 1502-1512
        • Berthold D.R.
        • Pond G.R.
        • Soban F.
        • et al.
        Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer: updated survival in the TAX327 study.
        J Clin Oncol official J theAmerican Soc Clin Oncol. 2008; 26: 242-245
        • de Bono J.S.
        • Oudard S.
        • Ozguroglu M.
        • et al.
        Prednisone plus cabazitaxel or mitoxantrone formetastatic castration-resistant prostate cancer progressing after docetaxel treatment: a randomised open-label trial.
        Lancet (London,England). 2010; 376: 1147-1154
        • Kim Y.J.
        • Kim Y.I.
        Therapeutic responses and survival effects of177Lu-PSMA-617 Radioligand therapy in metastatic castrateresistant prostate cancer: a meta-analysis.
        Clin Nucl Med. 2018; 43: 728-734
        • Pouliot F.
        • Johnson M.
        • Wu L.
        Non-invasive molecular imaging of prostate cancer lymph node metastasis.
        Trends Mol Med. 2009; 15: 254-262
        • Basu S.
        • Sirohi B.
        • Shrikhande S.V.
        Dual-tracer imaging approach inassessing tumor biology and heterogeneity in neuroendocrine tu- mors: its correlation with tumor proliferation index and possible multifaceted implications for personalized clinical management decisions, with focus on PRRT.
        Eur J Nucl Med Mol Imaging. 2014; 41: 1492-1496
        • Basu S.
        • Ranade R.
        • Thapa P.
        Correlation and discordance of tumourproliferation index and molecular imaging characteristics and their implications for treatment decisions and outcome pertaining to pep- tide receptor radionuclide therapy in patients with advanced neurondocrinetumour: developing a personalized model.
        Nucl Med Commun. 2015; 36: 766-774
        • Suman S.
        • Parghane R.V.
        • Joshi A.
        • et al.
        Therapeutic efficacy, prognostic variables and clinical out- come of (177)Lu-PSMA-617 PRLT in progressive mCRPC follow- ing multiple lines of treatment: prognostic implications of high FDG uptake on dual-tracer PET-CT vis-à-vis Gleason Score in such cohort.
        Br J Radiol. 2019; 10: 20190380
        • Adnan A.
        • Basu S.
        Concept proposal for a six-tier integrated dual-tracer PET-CT (68Ga-PSMA and FDG) image scoring system ('Pro-PET' score) and examining its potential implications in metastatic castration-resistant prostate carcinoma theranostics and prognosis.
        Nucl Med Commun. 2021; 42: 566-574
        • Ahmed H.U.
        • El-Shater Bosaily A.
        • Brown L.C.
        • et al.
        Diagnostic accuracy of multi-parametric MRI and TRUS biopsy in prostate cancer (PROMIS): a paired validating confirmatory study.
        Lancet. 2017; 389: 815-822
        • Kwan Timothy N.
        • et al.
        Performance of Ga-68 PSMA PET/CT for diagnosis and grading of local prostate cancer.
        Prostate Int. 2021; 9: 107-112
        • Satapathy S.
        • Singh H.
        • Kumar R.
        • et al.
        Diagnostic accuracy of 68Ga-PSMA PET/CT for initial detection in patients with suspected prostate cancer: a systematic review and meta-analysis.
        AJR Am J Roentgenol. 2021; 216: 599-607
        • Jadvar H.
        Is there use for FDG-PET in prostate cancer?.
        Semin Nucl Med. 2016; 46: 502-506
        • Sahin E.
        • Elboga U.
        • Kalender E.
        • et al.
        Clinical significance of incidental FDG uptake in theprostategland detected by PET/CT.
        Int J Clin Exp Med. 2015; 8: 10577-10585
        • Bertagna F.
        • Sadeghi R.
        • Giovanella L.
        • et al.
        Incidental uptake of 18F-fluorodeoxyglucose intheprostate gland. Systematic review and meta-analysis on prevalence and risk ofmalignancy.
        Nuklearmedizin. 2014; 53: 249-258
        • Brown A.M.
        • Lindenberg M.L.
        • Sankineni S.
        • et al.
        Does focal incidental 18F-FDG uptake in theprostate gland have significance?.
        Abdom Imaging. 2015; 40: 3222-3229
        • Kang P.M.
        • Seo W.I.
        • Lee S.S.
        • et al.
        Incidental abnormal FDG uptake in the prostate on 18-fluoro-2-deoxyglucose positron emission tomography-computed tomography.
        Asian Pac J Cancer Prev. 2014; 15: 8699-8703
        • Seino H.
        • Ono S.
        • Miura H.
        • et al.
        Incidental prostate 18F-FDG uptake without calcification indicates possibility of prostate cancer.
        Oncol Rep. 2014; 31: 1517-1522
        • Hwang I.
        • Chong A.
        • Jung S.I.
        • et al.
        Is further evaluation needed for incidental focal uptake in the prostate in 18-fluoro-2-deoxyglucose positron emission tomography-computed tomography images?.
        Ann Nucl Med. 2013; 27: 140-145
        • Awwad H.M.
        • Geisel J.
        • Obeid R.
        The role of choline in prostatecancer.
        Clin Biochem. 2012; 45: 1548-1553
        • Muller S.A.
        • Holzapfel K.
        • Seidl C.
        • et al.
        Characterization of choline uptake inprostate cancer cells following bicalutamide anddocetaxel treatment.
        Eur J Nucl Med Mol Imaging. 2009; 36: 1434-1442
        • Oka S.
        • Hattori R.
        • Kurosaki F.
        • et al.
        A preliminary study ofanti-1-amino-3-18Ffluorocyclobutyl-1-carboxylic acid for the detection of prostate cancer.
        J Nucl Med. 2007; 48: 46-55
        • Sasajima T.
        • Ono T.
        • Shimada N.
        • et al.
        Trans-1-amino-3-18F-fluorocyclobutanecarboxylic acid(anti-18F-FACBC) is a feasiblealternative to 11C-methyl-L-methionine and magnetic resonanceimaging for monitoring treatment response in gliomas.
        Nucl Med Biol. 2013; 40: 808-815
        • Oka S.
        • Okudaira H.
        • Yoshida Y.
        • et al.
        Transport mechanisms oftrans-1-amino-3-fluoro[1(14)C]cyclobutanecarboxylic acid in prostate cancer cells.
        Nucl Med Biol. 2012; 39: 109-119
        • Schuster D.M.
        • Nanni C.
        • Fanti S.
        PET tracers beyond FDG in prostatecancer.
        Semin Nucl Med. 2016; 46: 507-521
        • Savir-Baruch B.
        • Zanoni L.
        • Schuster D.M.
        Imaging of prostate cancerusing fluciclovine.
        PET Clin. 2017; 12: 145-157
        • Fowler Jr., J.E.
        • Sanders J.
        • Bigler S.A.
        • et al.
        Percent free prostate specific antigen and cancer detection in black and white men with total prostate specific antigen 2.5 to 9.9 ng./ml.
        J Urol. 2000; 163: 1467-1470
        • Hövels A.M.
        • Heesakkers R.A.
        • Adang E.M.
        • et al.
        The diagnosticaccuracy of CT and MRI in the staging of pelvic lymph nodes in patients with prostate cancer: a meta-analysis.
        Clin Radiol. 2008; 63: 387-395
        • American Urological Association
        AUA guidelines. American Urological Association website.
        (Available at:)
      2. National Comprehensive Cancer Network. Recent updatesto NCCN clinical practice guidelines in oncology (NCCN Guidelines®): prostate cancer—version 1.2017. National Comprehensive Cancer Network website. Available at: https://www. nccn.org/professionals/physician_gls/recently_updated.asp. Accessed January 12, 2017.

        • Mottet N.
        • Bellmunt J.
        • Briers E.
        • et al.
        EAU prostate cancerguidelines 2017. European Association of Urology website.
        (Available at:) (Accessed June 1, 2017)
        • Uprimny C.
        • Kroiss A.S.
        • Decristoforo C.
        • et al.
        68Ga-PSMA-11PET/CT in primary staging of prostate cancer: PSA and Gleason score predict the intensity of tracer accumulation in the primary tumour.
        Eur J Nucl Med Mol Imaging. 2017; 44: 941-949
        • Fendler W.P.
        • Schmidt D.F.
        • Wenter V.
        • et al.
        68Ga-PSMA PET/CT detects the location and extent of primary prostate cancer.
        J Nucl Med. 2016; 57: 1720-1725
        • Giesel F.L.
        • Sterzing F.
        • Schlemmer H.P.
        • et al.
        Intra-individualcomparison of 68Ga-PSMA-11-PET/CT and multi-parametric MR for imaging of primary prostate cancer.
        Eur J Nucl Med Mol Imaging. 2016; 43: 1400-1406
        • Fendler W.P.
        • Eiber M.
        • Beheshti M.
        • et al.
        68Ga-PSMA PET/CT: joint EANM and SNMMI procedure guideline for prostate cancer imaging—version 1.0.
        Eur J Nucl Med Mol Imaging. 2017; 44: 1014-1024
        • Litwin M.S.
        • Tan H.J.
        The diagnosis and treatment ofprostate cancer.
        J Am Med Assoc. 2017; 317: 2532-2542
        • Hofman M.S.
        • Lawrentschuk N.
        • Francis R.J.
        • et al.
        Prostate-specific membrane antigen PET-CT in patients with high-risk prostate cancer before curative-intent surgery or radiotherapy (proPSMA): a prospective, randomised, multicentre study.
        The Lancet. 2020; 395: 1208-1216
        • Donato P.
        • Roberts M.J.
        • Morton A.
        • et al.
        Improved specificitywith 68Ga PSMA PET/CT to detect clinically significant lesions “invisible” on multiparametric MRI of the prostate: a single institution comparative analysis with radical prostatectomy histology.
        Eur J Nucl Med Mol Imaging. 2019; 46: 20-30
        • Maurer T.
        • Eiber M.
        • Schwaiger M.
        • et al.
        Current use of PSMA-PET in prostate cancer management.
        Nat Rev Urol. 2016; 13: 226-235
        • Roberts M.J.
        • Morton A.
        • Donato A.
        • et al.
        68Ga-PSMA PET/CT tumour intensity pre-operatively predicts adverse path- ological outcomes and progression-free survival in localised prostate cancer.
        Eur J Nucl Med Mol Imaging. 2021; 48: 477-482
        • Lengana T.
        • Lawal I.O.
        • Boshomane T.G.
        • et al.
        68Ga-PSMAPET/CT replacing bone scan in the initial staging of skeletal metastasis in prostate cancer: a fait accompli?.
        Clin Genitourinary Cancer. 2018; 16: 392-401
        • Demirci E.
        • Sahin O.E.
        • Ocak M.
        • et al.
        Normal distribution pattern and physiological variants of 68Ga-PSMA-11 PET/CT imaging.
        Nucl Med Commun. 2016; 37: 1169-1179
        • Ghosh A.
        • Heston W.D.W.
        Tumor target prostatespecific membrane antigen (PSMA) and its regulation in prostate cancer.
        J Cell Biochem. 2004; 91: 528-539
        • Chakraborty P.S.
        • Tripathi M.
        • Agarwal K.K.
        • et al.
        Metastatic poorly differentiated prostatic carcinoma with neuroendocrine differentiation.
        Clin Nucl Med. 2015; 40: e163-e166
        • Zhou X.
        • Li Y.
        • Jiang X.
        • et al.
        Intra-individual comparison of18F-PSMA-1007 and 18F-FDG PET/CT in the evaluation of patients with prostate cancer.
        Front Oncol. 2020; 10: 585213
        • Rosar F.
        • Ribbat K.
        • Ries M.
        • et al.
        Neuron-specific enolasehas potential value as a biomarker for [18F]FDG/[68Ga]Ga- PSMA-11 PET mismatch findings in advanced mCRPC patients.
        EJNMMI Res. 2020; 10
        • Roehl K.A.
        • Han M.
        • Ramos C.G.
        • et al.
        Cancer progression and survival rates following anatomical radical retropubic prostatectomy in 3,478 consecutive patients: long-term results.
        J Urol. 2004; 172: 910-914
        • Roach 3rd, M.
        • Hanks G.
        • Thames Jr., H.
        • et al.
        Defining biochemical failure following radiotherapy with or without hormonal therapy in men with clinically localized prostate cancer: recommendations of the RTOG-ASTRO Phoenix Consensus Conference.
        Int J Radiat Oncol Biol Phys. 2006; 65: 965-974
        • Carroll P.
        Rising PSA after a radical treatment.
        Eur Urol. 2001; 40: 9-16
        • Afshar-Oromieh A.
        • Zechmann C.M.
        • Malcher A.
        • et al.
        Comparison of PET imaging with a 68Ga-labelled PSMA ligand and 18F-choline-based PET/CT for the diagnosis of recurrent prostate cancer.
        Eur J Nucl Med Mol Imaging. 2014; 41: 11-20
        • Afshar-Oromieh A.
        • Avtzi E.
        • Giesel F.L.
        • et al.
        The diagnosticvalue of PET/CT imaging with the 68Ga-labelled PSMA ligand HBED-CC in the diagnosis of recurrent prostate cancer.
        Eur J Nucl Med Mol Imaging. 2015; 42: 197-209
        • Eiber M.
        • Maurer T.
        • Souvatzoglou M.
        • et al.
        Evaluation ofhybrid 68Ga-PSMA ligand PET/CT in 248 patients with biochemical recurrence after radical prostatectomy.
        J Nucl Med. 2015; 56: 668-674
        • Perera M.
        • Papa N.
        • Christidis D.
        • et al.
        Sensitivity, specificity,and predictors of positive 68Ga–prostate-specific membrane antigen positron emission tomography in advanced prostate cancer: a systematic review and meta-analysis.
        Eur Urol. 2016; 70: 926-937
        • Fanti S.
        • Minozzi S.
        • Castellucci P.
        • et al.
        PET/CT with 11C-choline for evaluation of prostate cancer patients with biochemical recurrence: meta-analysis and critical review of available data.
        Eur J Nucl Med Mol Imaging. 2016; 43: 55-69
        • Chang C.H.
        • Wu H.C.
        • Tsai J.J.P.
        • et al.
        Detecting metastatic pelvic lymph nodes by (18)F-2-deoxyglucose positron emission tomography in patients with prostate-specific antigen relapse after treatment for localized prostate cancer.
        Urol Int. 2003; 70: 311-315
        • Schöder H.
        • Herrmann K.
        • Gönen M.
        • et al.
        2-[18F]fluoro-2-deoxyglucose positron emission tomography for detection of disease in patients with prostate-specific antigen relapse after radical prostatectomy.
        Clin Cancer Res. 2005; 11: 4761-4769
        • Sanz G.
        • Robles J.E.
        • Giménez M.
        • et al.
        Positron emission tomography with 18fluorine-labelled deoxyglucose: utility in localized and advanced prostate cancer.
        BJU Int. 1999; 84: 1028-1031
        • Sung J.
        • Espiritu J.I.
        • Segall G.M.
        • et al.
        Fluorodeoxyglucose positron emission tomography studies in the diagnosis and staging of clinically advanced prostate cancer.
        BJU Int. 2003; 92: 24-27
        • Richter J.A.
        • Rodríguez M.
        • Rioja J.
        • et al.
        Dual-tracer 11C-choline and FDG-PET in the diagnosis of biochemical prostate cancer relapse after radical treatment.
        Mol Imaging Biol. 2010; 12: 210-217
        • Basu S.
        • Parghane R.V.
        • Suman S.
        • et al.
        Towards personalizing treatment strategies in mCRPC: can dual-tracer PET-CT provide insights into tumor biology, guide the optimal treatment sequence, and individualize decision-making (between chemotherapy, second-generation anti-androgens and PSMA-directed radioligand therapy) early in the disease course?.
        Eur J Nucl Med Mol Imaging. 2020; 47: 1793-1797
        • Ost P.
        • Bossi A.
        • Decaestecker K.
        • et al.
        Metastasis-directed therapy of regional and distant recurrences after curative treatment of prostate cancer: a systematic review of the literature.
        Eur Urol. 2015; 67: 852-863
        • Hofman M.S.
        • Violet J.
        • Hicks R.J.
        • et al.
        [177Lu]-PSMA-617 radionuclide treatment in patients with metastatic castration-resistant prostate cancer (LuPSMA trial): a single-centre, single-arm, phase 2 study.
        Lancet Oncol. 2018; 19: 825-833
        • Hofman M.S.
        • Emmett L.
        • Sandhu S.
        • et al.
        [177Lu]Lu-PSMA-617 versus cabazitaxel in patients with metastatic castration-resistant prostate cancer (TheraP): a randomised, open-label, phase 2 trial.
        Lancet. 2021; 397: 797-804
        • Oyama N.
        • Akino H.
        • Suzuki Y.
        • et al.
        FDG PET for evaluating the change of glucose metabolism in prostate cancer after androgen ablation.
        Nucl Med Commun. 2001; 22: 963-969
        • Jadvar H.
        • Xiankui L.
        • Shahinian A.
        • et al.
        Glucose metabolism of human prostate cancer mouse xenografts.
        Mol Imaging. 2005; 4: 91-97
        • Ceci F.
        • Castellucci P.
        • Graziani T.
        • et al.
        11C-Choline PET/CTin castration-resistant prostate cancer patients treated with docetaxel.
        Eur J Nucl Med Mol Imaging. 2016; 43: 84-91
        • Maines F.
        • Caffo O.
        • Donner D.
        • et al.
        Serial 18F-choline-PETimaging in patients receiving enzalutamide for metastatic castration-resistant prostate cancer: response assessment and imaging biomarkers.
        Future Oncol. 2016; 12: 333-342
        • De Giorgi U.
        • Caroli P.
        • Scarpi E.
        • et al.
        18F-Fluorocholine PET/CT for early response assessment in patients with metastatic castration-resistant prostate cancer treated with enzalutamide.
        Eur J Nucl Med Mol Imaging. 2015; 42 ([Published correction appears in Eur J Nucl Med Mol Imaging 2015;42(8):1337–1338.]): 1276-1283
        • De Giorgi U.
        • Caroli P.
        • Burgio S.L.
        • et al.
        Early outcome prediction on 18F-fluorocholine PET/CT in metastatic castration- resistant prostate cancer patients treated with abiraterone.
        Oncotarget. 2014; 5: 12448-12458
        • Emmett L.M.
        • Yin C.
        • Crumbaker M.
        • et al.
        Rapid modulation of PSMA expression by androgen dep- rivation: serial 68Ga PSMA-11 PET in men with hormone sensitive and castrate resistant prostate cancer commencing androgen blockade.
        J Nucl Med. 2018; 118 (jnumed): 223099
        • Suman S.
        • Parghane R.V.
        • Joshi A.
        • et al.
        Combined 177 Lu-PSMA-617 PRLT and abiraterone acetate versus 177 Lu-PSMA-617 PRLT monotherapy in metastatic castration-resistant prostate cancer: an observational study comparing the response and durability.
        Prostate. 2021; 81: 1225-1234
        • Ferdinandus J.
        • Violet J.
        • Sandhu S.
        • et al.
        Prognostic biomarkers in men with metastatic castration-resistant prostate cancer receiving [177Lu]-PSMA-617.
        Eur J Nucl Med Mol Imaging. 2020; 47: 2322-2327
        • Michalski K.
        • Ruf J.
        • Goetz C.
        • et al.
        Prognostic implications of dual-tracer PET/CT: PSMA ligand and [18F]FDG PET/CT in patients undergoing [177Lu]PSMA radioligand therapy.
        Eur J Nucl Med Mol Imaging. 2021; 48: 2024-2030
        • Lavallée E.
        • Bergeron M.
        • Buteau F.A.
        • et al.
        Increased prostate cancer glucose metabolism detected by 18F-fluorodeoxyglucose positron emission tomography/computed tomography in localised Gleason 8-10 prostate cancers identifies very high-risk patients for early recurrence and resistance to castration.
        Eur Urol Focus. 2019; 5: 998-1006
        • Jadvar H.
        • Velez E.M.
        • Desai B.
        • et al.
        Prediction of time to hormonal treatment failure in metastatic castration-sensitive prostate cancer with 18F-FDG PET/CT.
        J Nucl Med. 2019; 60: 1524-1530
        • Bauckneht M.
        • Bertagna F.
        • Donegani M.I.
        • et al.
        The prognostic power of 18F-FDG PET/CT extends to estimating systemic treatment response duration in metastatic castration-resistant prostate cancer (mCRPC) patients.
        Prostate Cancer Prostatic Dis. 2021; 24: 1198-1207
        • Adnan A.
        • Basu S.
        Discordance between Histopathological grading and Dual-tracer PET-CT findings (68Ga-DOTATATE and FDG) in metastatic Neuroendocrine Neoplasms and outcome of 177Lu-DOTATATE PRRT: does in-vivo molecular PET imaging perform better from 'prediction of tumour biology' viewpoint? [published online ahead of print, 2021 Dec 7].
        J Nucl Med Technol. 2021; 121: 261998
        • Wang B.
        • Liu C.
        • Wei Y.
        • et al.
        A prospective trial of 68Ga-PSMA and 18F-FDG PET/CT in nonmetastatic prostate cancer patients with an early PSA progression during castration.
        Clin Cancer Res. 2020; 26: 4551-4558
        • Chen R.
        • Wang Y.
        • Shi Y.
        • et al.
        Diagnostic value of (18)F-FDG PET/CT in patients with biochemical recurrent prostate cancer and negative (68)Ga-PSMA PET/CT.
        Eur J Nucl Med Mol Imaging. 2021; 48: 2970-2977