Advertisement

PET Imaging Using Gallium-68 (68Ga) RM2

Published:September 21, 2022DOI:https://doi.org/10.1016/j.cpet.2022.07.006

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to PET Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Schroder F.H.
        • Hugosson J.
        • Roobol M.J.
        • et al.
        Prostate-cancer mortality at 11 years of follow-up.
        N Engl J Med. 2012; 366: 981-990
        • Sung H.
        • Ferlay J.
        • Siegel R.L.
        • et al.
        Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.
        CA Cancer J Clin. 2021; 71: 209-249
        • Baratto L.
        • Duan H.
        • Ferri V.
        • et al.
        The effect of various beta values on image quality and semiquantitative measurements in 68Ga-RM2 and 68Ga-PSMA-11 PET/MRI images reconstructed with a block sequential regularized expectation maximization algorithm.
        Clin Nucl Med. 2020; 45: 506-513
        • Fendler W.P.
        • Ferdinandus J.
        • Czernin J.
        • et al.
        Impact of (68)Ga-PSMA-11 PET on the management of recurrent prostate cancer in a prospective single-arm clinical trial.
        J Nucl Med. 2020; 61: 1793-1799
        • Sonni I.
        • Eiber M.
        • Fendler W.P.
        • et al.
        Impact of (68)Ga-PSMA-11 PET/CT on staging and management of prostate cancer patients in various clinical settings: a prospective single-center study.
        J Nucl Med. 2020; 61: 1153-1160
        • Dietlein M.
        • Kobe C.
        • Kuhnert G.
        • et al.
        Comparison of [(18)F]DCFPyL and [ (68)Ga]Ga-PSMA-HBED-CC for PSMA-PET imaging in patients with relapsed prostate cancer.
        Mol Imaging Biol. 2015; 17: 575-584
        • Rasul S.
        • Hacker M.
        • Kretschmer-Chott E.
        • et al.
        Clinical outcome of standardized (177)Lu-PSMA-617 therapy in metastatic prostate cancer patients receiving 7400 MBq every 4 weeks.
        Eur J Nucl Med Mol Imaging. 2020; 47: 713-720
        • Sathekge M.
        • Lengana T.
        • Modiselle M.
        • et al.
        68)Ga-PSMA-HBED-CC PET imaging in breast carcinoma patients.
        Eur J Nucl Med Mol Imaging. 2017; 44: 689-694
        • Rhee H.
        • Blazak J.
        • Tham C.M.
        • et al.
        Pilot study: use of gallium-68 PSMA PET for detection of metastatic lesions in patients with renal tumour.
        EJNMMI Res. 2016; 6: 76
        • Sasikumar A.
        • Joy A.
        • Nanabala R.
        • et al.
        68Ga-PSMA PET/CT false-positive tracer uptake in paget disease.
        Clin Nucl Med. 2016; 41: e454-e455
        • Noto B.
        • Vrachimis A.
        • Schafers M.
        • et al.
        Subacute stroke mimicking cerebral metastasis in 68Ga-PSMA-HBED-CC PET/CT.
        Clin Nucl Med. 2016; 41: e449-e451
        • Hermann R.M.
        • Djannatian M.
        • Czech N.
        • et al.
        Prostate-specific membrane antigen PET/CT: false-positive results due to sarcoidosis?.
        Case Rep Oncol. 2016; 9: 457-463
        • Rowe S.P.
        • Gorin M.A.
        • Hammers H.J.
        • et al.
        Imaging of metastatic clear cell renal cell carcinoma with PSMA-targeted (1)(8)F-DCFPyL PET/CT.
        Ann Nucl Med. 2015; 29: 877-882
        • Verburg F.A.
        • Krohn T.
        • Heinzel A.
        • et al.
        First evidence of PSMA expression in differentiated thyroid cancer using [(6)(8)Ga]PSMA-HBED-CC PET/CT.
        Eur J Nucl Med Mol Imaging. 2015; 42: 1622-1623
        • Schwenck J.
        • Tabatabai G.
        • Skardelly M.
        • et al.
        In vivo visualization of prostate-specific membrane antigen in glioblastoma.
        Eur J Nucl Med Mol Imaging. 2015; 42: 170-171
        • Krohn T.
        • Verburg F.A.
        • Pufe T.
        • et al.
        [(68)Ga]PSMA-HBED uptake mimicking lymph node metastasis in coeliac ganglia: an important pitfall in clinical practice.
        Eur J Nucl Med Mol Imaging. 2015; 42: 210-214
        • Tosoian J.J.
        • Gorin M.A.
        • Rowe S.P.
        • et al.
        Correlation of PSMA-Targeted (18)F-DCFPyL PET/CT findings with immunohistochemical and genomic data in a patient with metastatic neuroendocrine prostate cancer.
        Clin Genitourin Cancer. 2017; 15: e65-e68
        • Maurer T.
        • Gschwend J.E.
        • Rauscher I.
        • et al.
        Diagnostic efficacy of (68)Gallium-PSMA positron emission tomography compared to conventional imaging for lymph node staging of 130 consecutive patients with intermediate to high risk prostate cancer.
        J Urol. 2016; 195: 1436-1443
        • Korner M.
        • Waser B.
        • Rehmann R.
        • et al.
        Early over-expression of GRP receptors in prostatic carcinogenesis.
        Prostate. 2014; 74: 217-224
        • Beer M.
        • Montani M.
        • Gerhardt J.
        • et al.
        Profiling gastrin-releasing peptide receptor in prostate tissues: clinical implications and molecular correlates.
        Prostate. 2012; 72: 318-325
        • Markwalder R.
        • Reubi J.C.
        Gastrin-releasing peptide receptors in the human prostate: relation to neoplastic transformation.
        Cancer Res. 1999; 59: 1152-1159
        • Wieser G.
        • Mansi R.
        • Grosu A.L.
        • et al.
        Positron emission tomography (PET) imaging of prostate cancer with a gastrin releasing peptide receptor antagonist--from mice to men.
        Theranostics. 2014; 4: 412-419
        • Stoykow C.
        • Erbes T.
        • Maecke H.R.
        • et al.
        Gastrin-releasing peptide receptor imaging in breast cancer using the receptor antagonist (68)Ga-RM2 and PET.
        Theranostics. 2016; 6: 1641-1650
        • Dalm S.U.
        • Martens J.W.
        • Sieuwerts A.M.
        • et al.
        In vitro and in vivo application of radiolabeled gastrin-releasing peptide receptor ligands in breast cancer.
        J Nucl Med. 2015; 56: 752-757
        • Mattei J.
        • Achcar R.D.
        • Cano C.H.
        • et al.
        Gastrin-releasing peptide receptor expression in lung cancer.
        Arch Pathol Lab Med. 2014; 138: 98-104
        • Reubi J.C.
        • Korner M.
        • Waser B.
        • et al.
        High expression of peptide receptors as a novel target in gastrointestinal stromal tumours.
        Eur J Nucl Med Mol Imaging. 2004; 31: 803-810
        • Reubi J.C.
        Peptide receptor expression in GEP-NET.
        Virchows Arch. 2007; 451: S47-S50
        • Accardo A.
        • Galli F.
        • Mansi R.
        • et al.
        Pre-clinical evaluation of eight DOTA coupled gastrin-releasing peptide receptor (GRP-R) ligands for in vivo targeting of receptor-expressing tumors.
        EJNMMI Res. 2016; 6: 17
        • Ananias H.J.
        • van den Heuvel M.C.
        • Helfrich W.
        • et al.
        Expression of the gastrin-releasing peptide receptor, the prostate stem cell antigen and the prostate-specific membrane antigen in lymph node and bone metastases of prostate cancer.
        Prostate. 2009; 69: 1101-1108
        • Jensen R.T.
        • Battey J.F.
        • Spindel E.R.
        • et al.
        International Union of Pharmacology. LXVIII. Mammalian bombesin receptors: nomenclature, distribution, pharmacology, signaling, and functions in normal and disease states.
        Pharmacol Rev. 2008; 60: 1-42
        • Schroeder R.P.
        • de Visser M.
        • van Weerden W.M.
        • et al.
        Androgen-regulated gastrin-releasing peptide receptor expression in androgen-dependent human prostate tumor xenografts.
        Int J Cancer. 2010; 126: 2826-2834
        • Xiao C.
        • Reitman M.L.
        Bombesin-like receptor 3: physiology of a functional orphan.
        Trends Endocrinol Metab. 2016; 27: 603-605
        • Varasteh Z.
        • Aberg O.
        • Velikyan I.
        • et al.
        In vitro and in vivo evaluation of a (18)F-labeled high affinity NOTA conjugated bombesin antagonist as a PET ligand for GRPR-targeted tumor imaging.
        PLoS One. 2013; 8: e81932
        • Nagasaki S.
        • Nakamura Y.
        • Maekawa T.
        • et al.
        Immunohistochemical analysis of gastrin-releasing peptide receptor (GRPR) and possible regulation by estrogen receptor betacx in human prostate carcinoma.
        Neoplasma. 2012; 59: 224-232
        • Constantinides C.
        • Lazaris A.C.
        • Haritopoulos K.N.
        • et al.
        Immunohistochemical detection of gastrin releasing peptide in patients with prostate cancer.
        World J Urol. 2003; 21: 183-187
        • Minamimoto R.
        • Sonni I.
        • Hancock S.
        • et al.
        Prospective evaluation of (68)Ga-RM2 PET/MRI in patients with biochemical recurrence of prostate cancer and negative findings on conventional imaging.
        J Nucl Med. 2018; 59: 803-808
        • Schollhammer R.
        • De Clermont Gallerande H.
        • Yacoub M.
        • et al.
        Comparison of the radiolabeled PSMA-inhibitor (111)In-PSMA-617 and the radiolabeled GRP-R antagonist (111)In-RM2 in primary prostate cancer samples.
        EJNMMI Res. 2019; 9: 52
        • Bertaccini G.
        • Impicciatore M.
        Action of bombesin on the motility of the stomach.
        Naunyn Schmiedebergs Arch Pharmacol. 1975; 289: 149-156
        • Ginj M.
        • Zhang H.
        • Waser B.
        • et al.
        Radiolabeled somatostatin receptor antagonists are preferable to agonists for in vivo peptide receptor targeting of tumors.
        Proc Natl Acad Sci U S A. 2006; 103: 16436-16441
        • Mansi R.
        • Wang X.
        • Forrer F.
        • et al.
        Evaluation of a 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid-conjugated bombesin-based radioantagonist for the labeling with single-photon emission computed tomography, positron emission tomography, and therapeutic radionuclides.
        Clin Cancer Res. 2009; 15: 5240-5249
        • Millar J.B.
        • Rozengurt E.
        Chronic desensitization to bombesin by progressive down-regulation of bombesin receptors in Swiss 3T3 cells. Distinction from acute desensitization.
        J Biol Chem. 1990; 265: 12052-12058
        • Kahkonen E.
        • Jambor I.
        • Kemppainen J.
        • et al.
        In vivo imaging of prostate cancer using [68Ga]-labeled bombesin analog BAY86-7548.
        Clin Cancer Res. 2013; 19: 5434-5443
        • Ambrosini V.
        • Fani M.
        • Fanti S.
        • et al.
        Radiopeptide imaging and therapy in Europe.
        J Nucl Med. 2011; 52: 42S-55S
        • Mansi R.
        • Wang X.
        • Forrer F.
        • et al.
        Development of a potent DOTA-conjugated bombesin antagonist for targeting GRPr-positive tumours.
        Eur J Nucl Med Mol Imaging. 2011; 38: 97-107
        • Baratto L.
        • Duan H.
        • Laudicella R.
        • et al.
        Physiological (68)Ga-RM2 uptake in patients with biochemically recurrent prostate cancer: an atlas of semi-quantitative measurements.
        Eur J Nucl Med Mol Imaging. 2020; 47: 115-122
        • Roivainen A.
        • Kahkonen E.
        • Luoto P.
        • et al.
        Plasma pharmacokinetics, whole-body distribution, metabolism, and radiation dosimetry of 68Ga bombesin antagonist BAY 86-7548 in healthy men.
        J Nucl Med. 2013; 54: 867-872
        • Gnesin S.
        • Cicone F.
        • Mitsakis P.
        • et al.
        First in-human radiation dosimetry of the gastrin-releasing peptide (GRP) receptor antagonist (68)Ga-NODAGA-MJ9.
        EJNMMI Res. 2018; 8: 108
        • Lantry L.E.
        • Cappelletti E.
        • Maddalena M.E.
        • et al.
        177Lu-AMBA: synthesis and characterization of a selective 177Lu-labeled GRP-R agonist for systemic radiotherapy of prostate cancer.
        J Nucl Med. 2006; 47: 1144-1152
        • Maecke H.R.
        • Hofmann M.
        • Haberkorn U.
        (68)Ga-labeled peptides in tumor imaging.
        J Nucl Med. 2005; 46: 172S-8S
        • Reubi J.C.
        • Macke H.R.
        • Krenning E.P.
        Candidates for peptide receptor radiotherapy today and in the future.
        J Nucl Med. 2005; 46: 67S-75S
        • Heppeler A.
        • Froidevaux S.
        • Eberle A.N.
        • et al.
        Receptor targeting for tumor localisation and therapy with radiopeptides.
        Curr Med Chem. 2000; 7: 971-994
        • Force USPST
        • Grossman D.C.
        • Curry S.J.
        • et al.
        Screening for prostate cancer: US preventive services task force recommendation statement.
        JAMA. 2018; 319: 1901-1913
        • Bekelman J.E.
        • Rumble R.B.
        • Chen R.C.
        • et al.
        Clinically localized prostate cancer: ASCO clinical practice guideline endorsement of an american urological association/american society for radiation oncology/society of urologic oncology guideline.
        J Clin Oncol. 2018; 36: 3251-3258
        • Trabulsi E.J.
        • Rumble R.B.
        • Jadvar H.
        • et al.
        Optimum imaging strategies for advanced prostate cancer: ASCO guideline.
        J Clin Oncol. 2020; 38: 1963-1996
        • Touijer K.A.
        • Michaud L.
        • Alvarez H.A.V.
        • et al.
        Prospective study of the radiolabeled GRPR antagonist BAY86-7548 for positron emission tomography/computed tomography imaging of newly diagnosed prostate cancer.
        Eur Urol Oncol. 2019; 2: 166-173
        • Fassbender T.F.
        • Schiller F.
        • Zamboglou C.
        • et al.
        Voxel-based comparison of [(68)Ga]Ga-RM2-PET/CT and [(68)Ga]Ga-PSMA-11-PET/CT with histopathology for diagnosis of primary prostate cancer.
        EJNMMI Res. 2020; 10: 62
        • Mapelli P.
        • Ghezzo S.
        • Samanes Gajate A.M.
        • et al.
        68)Ga-PSMA and (68)Ga-DOTA-RM2 PET/MRI in recurrent prostate cancer: diagnostic performance and association with clinical and histopathological data.
        Cancers (Basel). 2022; 14https://doi.org/10.3390/cancers14020334
        • Baratto L.
        • Duan H.
        • Hatami N.
        • et al.
        68Ga-RM2 PET/CT in patients with newly diagnosed intermediate- or high-risk prostate cancer.
        J Nucl Med. 2020; 61: 1261
        • Cookson M.S.
        • Aus G.
        • Burnett A.L.
        • et al.
        Variation in the definition of biochemical recurrence in patients treated for localized prostate cancer: the american urological association prostate guidelines for localized prostate cancer update panel report and recommendations for a standard in the reporting of surgical outcomes.
        J Urol. 2007; 177: 540-545
        • Roach 3rd, M.
        • Hanks G.
        • Thames Jr., H.
        • et al.
        Defining biochemical failure following radiotherapy with or without hormonal therapy in men with clinically localized prostate cancer: recommendations of the RTOG-ASTRO phoenix consensus conference.
        Int J Radiat Oncol Biol Phys. 2006; 65: 965-974
        • Caire A.A.
        • Sun L.
        • Ode O.
        • et al.
        Delayed prostate-specific antigen recurrence after radical prostatectomy: how to identify and what are their clinical outcomes?.
        Urology. 2009; 74: 643-647
        • Crocerossa F.
        • Marchioni M.
        • Novara G.
        • et al.
        Detection rate of prostate specific membrane antigen tracers for positron emission tomography/computerized tomography in prostate cancer biochemical recurrence: a systematic review and network meta-analysis.
        J Urol. 2021; 205: 356-369
        • Baratto L.
        • Song H.
        • Duan H.
        • et al.
        PSMA- and GRPR-targeted PET: results from 50 patients with biochemically recurrent prostate cancer.
        J Nucl Med. 2021; https://doi.org/10.2967/jnumed.120.259630
        • Wieser G.
        • Popp I.
        • Christian Rischke H.
        • et al.
        Diagnosis of recurrent prostate cancer with PET/CT imaging using the gastrin-releasing peptide receptor antagonist (68)Ga-RM2: preliminary results in patients with negative or inconclusive [(18)F]Fluoroethylcholine-PET/CT.
        Eur J Nucl Med Mol Imaging. 2017; 44: 1463-1472
        • Maina T.
        • Bergsma H.
        • Kulkarni H.R.
        • et al.
        Preclinical and first clinical experience with the gastrin-releasing peptide receptor-antagonist [(6)(8)Ga]SB3 and PET/CT.
        Eur J Nucl Med Mol Imaging. 2016; 43: 964-973
        • Meller B.
        • Bremmer F.
        • Sahlmann C.O.
        • et al.
        Alterations in androgen deprivation enhanced prostate-specific membrane antigen (PSMA) expression in prostate cancer cells as a target for diagnostics and therapy.
        EJNMMI Res. 2015; 5: 66
        • Nock B.A.
        • Kaloudi A.
        • Lymperis E.
        • et al.
        Theranostic perspectives in prostate cancer with the gastrin-releasing peptide receptor antagonist NeoBOMB1: preclinical and first clinical results.
        J Nucl Med. 2017; 58: 75-80
        • Dalm S.U.
        • Bakker I.L.
        • de Blois E.
        • et al.
        68Ga/177Lu-NeoBOMB1, a novel radiolabeled GRPR antagonist for theranostic use in oncology.
        J Nucl Med. 2017; 58: 293-299
        • Gruber L.
        • Jimenez-Franco L.D.
        • Decristoforo C.
        • et al.
        MITIGATE-NeoBOMB1, a Phase I/IIa study to evaluate safety, Pharmacokinetics, and preliminary imaging of (68)Ga-NeoBOMB1, a gastrin-releasing peptide receptor antagonist, in GIST patients.
        J Nucl Med. 2020; 61: 1749-1755
        • Mitran B.
        • Varasteh Z.
        • Abouzayed A.
        • et al.
        Bispecific GRPR-antagonistic anti-PSMA/GRPR heterodimer for PET and SPECT diagnostic imaging of prostate cancer.
        Cancers (Basel). 2019; 11https://doi.org/10.3390/cancers11091371
        • Lundmark F.
        • Abouzayed A.
        • Mitran B.
        • et al.
        Heterodimeric radiotracer targeting PSMA and GRPR for imaging of prostate cancer-optimization of the affinity towards PSMA by linker modification in murine model.
        Pharmaceutics. 2020; 12https://doi.org/10.3390/pharmaceutics12070614
        • Ye S.
        • Li H.
        • Hu K.
        • et al.
        Radiosynthesis and biological evaluation of 18F-labeled bispecific heterodimer targeted dual gastrin-releasing peptide receptor and prostate-specific membrane antigen for prostate cancer imaging.
        Nucl Med Commun. 2022; 43: 323-331
        • Abouzayed A.
        • Yim C.B.
        • Mitran B.
        • et al.
        Synthesis and preclinical evaluation of radio-iodinated GRPR/PSMA bispecific heterodimers for the theranostics application in prostate cancer.
        Pharmaceutics. 2019; 11https://doi.org/10.3390/pharmaceutics11070358