Advertisement

Total-Body PET Kinetic Modeling and Potential Opportunities Using Deep Learning

  • Yiran Wang
    Affiliations
    Department of Biomedical Engineering, University of California, 451 E. Health Sciences Drive, Davis, CA 95616, USA

    Department of Radiology, University of California Davis Medical Center, Ambulatory Care Center, Building Suite 3100, 4860 Y Street, Sacramento, CA 95817, USA
    Search for articles by this author
  • Elizabeth Li
    Affiliations
    Department of Biomedical Engineering, University of California, 451 E. Health Sciences Drive, Davis, CA 95616, USA
    Search for articles by this author
  • Simon R. Cherry
    Affiliations
    Department of Biomedical Engineering, University of California, 451 E. Health Sciences Drive, Davis, CA 95616, USA

    Department of Radiology, University of California Davis Medical Center, Ambulatory Care Center, Building Suite 3100, 4860 Y Street, Sacramento, CA 95817, USA
    Search for articles by this author
  • Guobao Wang
    Correspondence
    Corresponding author.
    Affiliations
    Department of Radiology, University of California Davis Medical Center, Ambulatory Care Center, Building Suite 3100, 4860 Y Street, Sacramento, CA 95817, USA
    Search for articles by this author
Published:August 03, 2021DOI:https://doi.org/10.1016/j.cpet.2021.06.009

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to PET Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Jones T.
        • Townsend D.
        History and future technical innovation in positron emission tomography.
        J Med Imag. 2017; 4: 011013
      1. Morris ED, Endres CJ, Schmidt KC, et al. Kinetic modeling in positron emission tomography. In Miles N. Wernick and John N. Aarsvold eds. Emission Tomography: The Fundamentals of PET and SPECT (pp. 499-540). Elsevier Inc.. https://doi.org/10.1016/B978-012744482-6.50026-0.

        • Carson R.E.
        Tracer kinetic modeling in PET.
        in: Bailey D. Townsend D. Valk P. Maisey M. Positron emission tomography. Springer-Verlag, London, UK2005: 127-159
        • Wang G.
        • Rahmim A.
        • Gunn R.N.
        PET parametric imaging: past, present, and future.
        IEEE Trans Radiat Plasma Med Sci. 2020; 4: 663-675
        • Cherry S.R.
        • Jones T.
        • Karp J.S.
        • et al.
        Total-body PET: Maximizing sensitivity to Create new opportunities for clinical research and patient Care.
        J Nucl Med. 2018; 59: 3-12
        • Karakatsanis N.A.
        • Lodge M.A.
        • Tahari A.K.
        • et al.
        Dynamic whole-body PET parametric imaging: I. Concept, acquisition protocol optimization and clinical application.
        Phys Med Biol. 2013; 58: 7391-7418
        • Hu J.
        • Panin V.
        • Smith A.M.
        • et al.
        Design and implementation of Automated clinical whole body parametric PET with Continuous bed motion.
        IEEE Trans Radiat Plasma Med Sci. 2020; 4: 696-707
        • Rahmim A.
        • Lodge M.A.
        • Karakatsanis N.A.
        • et al.
        Dynamic whole-body PET imaging: principles, potentials and applications.
        Eur J Nucl Med Mol Imaging. 2019; 46: 501-518
        • Karp J.S.
        • Viswanath V.
        • Geagan M.J.
        • et al.
        PennPET explorer: design and preliminary performance of a whole-body imager.
        J Nucl Med. 2020; 61: 136-143
        • Alberts I.
        • Hünermund J.-N.
        • Prenosil G.
        • et al.
        Clinical performance of long axial field of view PET/CT: a head-to-head intra-individual comparison of the Biograph Vision Quadra with the Biograph Vision PET/CT.
        Eur J Nucl Med Mol Imaging. 2021; : 1-10https://doi.org/10.1007/s00259-021-05282-7
        • Cherry S.R.
        • Badawi R.D.
        • Karp J.S.
        • et al.
        Total-body imaging: transforming the role of positron emission tomography.
        Sci Transl Med. 2017; 9 (eaaf6169)https://doi.org/10.1126/scitranslmed.aaf6169
        • Spencer B.A.
        • Berg E.
        • Schmall J.P.
        • et al.
        Performance evaluation of the uEXPLORER Total-body PET/CT scanner based on NEMA NU 2-2018 with additional tests to characterize long axial field-of-view PET scanners.
        J Nucl Med. 2021; 62: 861-870https://doi.org/10.2967/jnumed.120.250597
        • Badawi R.D.
        • Shi H.
        • Hu P.
        • et al.
        First human imaging studies with the EXPLORER total-body PET scanner∗.
        J Nucl Med. 2019; 60: 299-303
        • Feng T.
        • Zhao Y.
        • Shi H.
        • et al.
        Total-body quantitative parametric imaging of early kinetics of FDG.
        J Nucl Med. 2021; 62: 738-744https://doi.org/10.2967/jnumed.119.238113
        • Vera D.B.
        • Schulte B.
        • Henrich T.
        • et al.
        First-in-human total-body PET imaging of HIV with 89Zr- VRC01 on the EXPLORER.
        J Nucl Med. 2020; 61: 545
        • Wang G.
        • Parikh M.
        • Nardo L.
        • et al.
        Total-body dynamic PET of metastatic cancer: first patient results.
        J Nucl Med. 2020; 61: 208
        • Gunn R.N.
        • Gunn S.R.
        • Cunningham V.J.
        Positron emission tomography compartmental models.
        J Cereb Blood Flow Metab. 2001; 21: 635-652
        • Patlak C.S.
        • Blasberg R.G.
        • Fenstermacher J.D.
        Graphical evaluation of blood-to-brain transfer Constants from multiple-time uptake data.
        J Cereb Blood Flow Metab. 1983; 3: 1-7
        • Watabe H.
        • Ikoma Y.
        • Kimura Y.
        • et al.
        PET kinetic analysis—compartmental model.
        Ann Nucl Med. 2006; 20: 583-588
        • Hooker J.M.
        • Carson R.E.
        Human positron emission tomography Neuroimaging.
        Annu Rev Biomed Eng. 2019; 21: 551-581
        • Dimitrakopoulou-Strauss A.
        • Pan L.
        • Sachpekidis C.
        Kinetic modeling and parametric imaging with dynamic PET for oncological applications: general considerations, current clinical applications, and future perspectives.
        Eur J Nucl Med Mol Imaging. 2021; : 1-19https://doi.org/10.1007/s00259-020-04843-6
        • Eberl S.
        • Anayat A.R.
        • Fulton R.R.
        Evaluation of two population-based input functions for quantitative neurological FDG PET studies.
        Eur J Nucl Med. 1997; 24: 299-304
        • Gallezot J.-D.
        • Lu Y.
        • Naganawa M.
        • et al.
        Parametric imaging with PET and SPECT.
        IEEE Trans Radiat Plasma Med Sci. 2020; 4: 1-23
        • Zhang X.
        • Cherry S.R.
        • Xie Z.
        • et al.
        Subsecond total-body imaging using ultrasensitive positron emission tomography.
        Proc Natl Acad Sci U S A. 2020; 117: 2265-2267
        • Mullani N.A.
        • Herbst R.S.
        • O’Neil R.G.
        • et al.
        Tumor blood flow measured by PET dynamic imaging of first-pass 18F-FDG uptake: a comparison with 15O-labeled water-measured blood flow.
        J Nucl Med. 2008; 49: 517-523
        • Abraham A.
        • Nichol G.
        • Williams K.A.
        • et al.
        18 F-FDG PET imaging of myocardial viability in an experienced center with access to 18 F-FDG and integration with clinical Management teams: the Ottawa-FIVE Substudy of the PARR 2 trial.
        J Nucl Med. 2010; 51: 567-574
        • Chen D.L.
        • Cheriyan J.
        • Chilvers E.R.
        • et al.
        Quantification of lung PET images: challenges and opportunities.
        J Nucl Med. 2017; 58: 201-207
        • Dimitrakopoulou-Strauss A.
        • Strauss L.G.
        • Schwarzbach M.
        • et al.
        Dynamic PET 18F-FDG studies in patients with Primary and Recurrent Soft-tissue Sarcomas: impact on diagnosis and correlation with Grading.
        J Nucl Med. 2001; 42: 713-720
        • Wang Y.
        • Cherry S.
        • Badawi R.
        • et al.
        Effect of dual-input function and dispersion on lung FDG-PET kinetic quantification using the EXPLORER total-body PET/CT scanner.
        J Nucl Med. 2020; 61: 13
        • Zuo Y.
        • Cherry S.
        • Badawi R.
        • et al.
        Multiphase Patlak plot enabled by high temporal resolution total-body dynamic PET.
        J Nucl Med. 2020; 61: 207
        • Cramer S.P.
        • Larsson H.B.
        Accurate determination of blood–brain barrier permeability using dynamic contrast-enhanced T1-Weighted MRI: a simulation and in vivo study on healthy subjects and multiple Sclerosis patients.
        J Cereb Blood Flow Metab. 2014; 34: 1655-1665
        • Wang G.
        • Sarkar S.
        • Kim E.
        • et al.
        Time-varying kinetic modeling of high temporal- resolution dynamic 18F-FDG PET data for multiparametric imaging.
        J Nucl Med. 2018; 59: 503
        • Wang G.
        • Spencer B.
        • Sarkar S.
        • et al.
        Quantification of glucose transport using high temporal resolution dynamic PET imaging.
        J Nucl Med. 2019; 60: 521
        • Kadrmas D.J.
        • Hoffman J.M.
        Methodology for quantitative rapid multi-tracer PET tumor characterizations.
        Theranostics. 2013; 3: 757-773
        • Hanahan D.
        • Weinberg R.A.
        Hallmarks of cancer: the Next generation.
        Cell. 2011; 144: 646-674
        • Gunn R.N.
        • Sargent P.A.
        • Bench C.J.
        • et al.
        Tracer kinetic modeling of the 5-HT1AReceptor ligand [carbonyl-11C]WAY-100635 for PET.
        NeuroImage. 1998; 8: 426-440
        • Domingues I.
        • Pereira G.
        • Martins P.
        • et al.
        Using deep learning techniques in medical imaging: a systematic review of applications on CT and PET.
        Artif Intell Rev. 2020; 53: 4093-4160
        • Gong K.
        • Berg E.
        • Cherry S.R.
        • et al.
        Machine learning in PET: from photon detection to quantitative image reconstruction.
        Proc IEEE. 2020; 108: 51-68
        • Wang G.
        • Corwin M.T.
        • Olson K.A.
        • et al.
        Dynamic PET of human liver inflammation: impact of kinetic modeling with optimization-derived dual-blood input function.
        Phys Med Biol. 2018; 63: 155004
      2. Li E, Spencer BA, Schmall JP, Wang G, Cherry SR. Pulse-timing methods for time delay estimation in dynamic total-body PET kinetic modeling. In: Conference Proceeding of IEEE Nuclear Science Symposium and Medical Imaging Conference, 2020. (abstract only).

        • Keiding S.
        Bringing physiology into PET of the liver.
        J Nucl Med. 2012; 53: 425-433
        • Kuttner S.
        • Wickstrøm K.K.
        • Lubberink M.
        • et al.
        Cerebral blood flow measurements with 15 O-water PET using a non-invasive machine-learning-derived arterial input function.
        J Cereb Blood Flow Metab. 2021; (0271678X2199139)https://doi.org/10.1177/0271678X21991393
        • Wang L.
        • Ma T.
        • Yao S.
        • et al.
        Direct estimation of input function based on Fine-tuned deep learning method in dynamic PET imaging.
        J Nucl Med. 2020; 61: 1394
        • Burger C.
        • Buck A.
        Tracer kinetic modelling of receptor data with mathematical metabolite correction.
        Eur J Nucl Med. 1996; 23: 539-545
        • Sanabria-Bohórquez S.M.
        • Labar D.
        • Levêque P.
        • et al.
        [11C]Flumazenil metabolite measurement in plasma is not necessary for accurate brain benzodiazepine receptor quantification.
        Eur J Nucl Med. 2000; 27: 1674-1683
        • Graham M.M.
        • Peterson L.M.
        • Hayward R.M.
        Comparison of simplified quantitative analyses of FDG uptake.
        Nucl Med Biol. 2000; 27: 647-655
        • Feng D.D.
        • Chen K.
        • Wen L.
        Noninvasive input function acquisition and simultaneous estimations with physiological parameters for PET quantification: a brief review.
        IEEE Trans Radiat Plasma Med Sci. 2020; 4: 676-683
        • Golla S.S.V.
        • Adriaanse S.M.
        • Yaqub M.
        • et al.
        Model selection criteria for dynamic brain PET studies.
        EJNMMI Phys. 2017; 4: 1-10
        • Klyuzhin I.S.
        • Bevington C.W.J.
        • Cheng J.-C.
        • et al.
        Detection of transient neurotransmitter response using personalized neural networks.
        Phys Med Biol. 2020; 65: 235004
        • Fuller O.K.
        • Angelis G.I.
        • Meikle S.R.
        Classification of neurotransmitter response in dynamic PET data using machine learning approaches.
        IEEE Trans Radiat Plasma Med Sci. 2020; 4: 708-719
        • Golish S.R.
        • Hove J.D.
        • Schelbert H.R.
        • et al.
        A fast nonlinear method for parametric imaging of myocardial perfusion by dynamic 13N-ammonia PET.
        J Nucl Med. 2001; 42: 924-931
        • Strauss L.G.
        • Pan L.
        • Cheng C.
        • et al.
        Shortened acquisition protocols for the quantitative assessment of the 2-tissue-compartment model using dynamic PET/CT 18F-FDG studies.
        J Nucl Med. 2011; 52: 379-385
        • Pan L.
        • Cheng C.
        • Haberkorn U.
        • et al.
        Machine learning-based kinetic modeling: a robust and reproducible solution for quantitative analysis of dynamic PET data.
        Phys Med Biol. 2017; 62: 3566
        • Wang B.
        • Ruan D.
        • Liu H.
        Noninvasive estimation of macro-parameters by deep learning.
        IEEE Trans Radiat Plasma Med Sci. 2020; 4: 684-695
        • Wang G.
        • Qi J.
        An optimization transfer algorithm for nonlinear parametric image reconstruction from dynamic PET data.
        IEEE Trans Med Imaging. 2012; 31: 1977-1988
        • Feng T.
        • Zhao Y.
        • Dong Y.
        • et al.
        Acceleration of whole-body Patlak parametric image reconstruction using convolutional neural network.
        J Nucl Med. 2019; 60: 518
        • Xie N.
        • Gong K.
        • Guo N.
        • et al.
        Clinically translatable direct Patlak reconstruction from dynamic PET with motion correction using convolutional neural network.
        in: Martel A.L. Abolmaesumi P. Stoyanov D. Medical image computing and computer Assisted Intervention – MICCAI 2020. Vol 12267. Lecture Notes in computer Science. Springer International Publishing, Cham, Switzerland2020: 793-802https://doi.org/10.1007/978-3-030-59728-3_77
        • Zhou X.
        • Belkin M.
        Semi-supervised learning.
        in: Theodoridis S. Chellappa R. Diniz P. Naylor P. Suykens J. Academic press Library in signal processing. vol. 1. Elsevier, Cambridge, Massachusetts, USA2014: 1239-1269https://doi.org/10.1016/B978-0-12-396502-8.00022-X
        • Jin X.
        • Mulnix T.
        • Gallezot J.-D.
        • et al.
        Evaluation of motion correction methods in human brain PET imaging-A simulation study based on human motion data: evaluation of human brain PET motion correction methods.
        Med Phys. 2013; 40: 102503
      3. Bec J, Henry D, Kyme A, et al. Optical motion tracking for use with the EXPLORER total-body PET scanner. J Nucl Med. 2018, 59(supplement 1):429.

        • Rahmim A.
        • Olivier R.
        • Habib Z.
        Strategies for motion tracking and correction in PET.
        PET Clin. 2007; 2: 251-266
        • Lu Y.
        • Naganawa M.
        • Toyonaga T.
        • et al.
        Data-driven motion detection and event-by-event correction for brain PET: comparison with vicra.
        J Nucl Med. 2020; 61: 1397-1403
        • Ren S.
        • Jin X.
        • Chan C.
        • et al.
        Data-driven event-by-event respiratory motion correction using TOF PET list-mode centroid of distribution.
        Phys Med Biol. 2017; 62: 4741-4755
        • Lu Y.
        • Gallezot J.-D.
        • Naganawa M.
        • et al.
        Data-driven voluntary body motion detection and non-rigid event-by-event correction for static and dynamic PET.
        Phys Med Biol. 2019; 64: 065002
        • Li T.
        • Zhang M.
        • Qi W.
        • et al.
        Motion correction of respiratory-gated PET images using deep learning based image registration framework.
        Phys Med Biol. 2020; 65: 155003