Advertisement
Review Article| Volume 16, ISSUE 2, P285-293, April 2021

Radionuclide Imaging of Cardiac Amyloidosis

  • Vladimir Joseph
    Affiliations
    Division of Cardiovascular Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
    Search for articles by this author
  • Howard M. Julien
    Affiliations
    Division of Cardiovascular Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
    Search for articles by this author
  • Paco E. Bravo
    Correspondence
    Corresponding author. Hospital of the University of Pennsylvania, 3400 Civic Center Boulevard, 11-154 South Pavilion, Philadelphia, PA 19104.
    Affiliations
    Division of Cardiovascular Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA

    Division of Nuclear Medicine and Clinical Molecular Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA

    Division of Cardiothoracic Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
    Search for articles by this author
Published:February 12, 2021DOI:https://doi.org/10.1016/j.cpet.2020.12.010

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to PET Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Lachmann H.J.
        • Hawkins P.N.
        Systemic amyloidosis.
        Curr Opin Pharmacol. 2006; 6: 214-220
        • Falk R.H.
        Diagnosis and management of the cardiac amyloidoses.
        Circulation. 2005; 112: 2047-2060
        • Merlini G.
        • Seldin D.C.
        • Gertz M.A.
        Amyloidosis: pathogenesis and new therapeutic options.
        J Clin Oncol. 2011; 29: 1924-1933
        • Hamilton J.A.
        • Benson M.D.
        Transthyretin: a review from a structural perspective.
        Cell Mol Life Sci. 2001; 58: 1491-1521
        • Kelly J.W.
        Mechanisms of amyloidogenesis.
        Nat Struct Biol. 2000; 7: 824-826
        • Martinez-Naharro A.
        • Hawkins P.N.
        • Fontana M.
        Cardiac amyloidosis.
        Clin Med (Lond). 2018; 18: s30-s35
        • Witteles R.M.
        • Bokhari S.
        • Damy T.
        • et al.
        Screening for transthyretin amyloid cardiomyopathy in everyday practice.
        JACC Heart Failure. 2019; 7: 709-716
        • Ruberg F.L.
        • Berk J.L.
        Transthyretin (ttr) cardiac amyloidosis.
        Circulation. 2012; 126: 1286-1300
        • Muchtar E.
        • Gertz M.A.
        • Kumar S.K.
        • et al.
        Improved outcomes for newly diagnosed al amyloidosis between 2000 and 2014: cracking the glass ceiling of early death.
        Blood. 2017; 129: 2111-2119
        • Bravo P.E.
        • Fujikura K.
        • Kijewski M.F.
        • et al.
        Relative apical sparing of myocardial longitudinal strain is explained by regional differences in total amyloid mass rather than the proportion of amyloid deposits.
        JACC Cardiovasc Imaging. 2019; 12: 1165-1173
        • Buss S.J.
        • Emami M.
        • Mereles D.
        • et al.
        Longitudinal left ventricular function for prediction of survival in systemic light-chain amyloidosis: incremental value compared with clinical and biochemical markers.
        J Am Coll Cardiol. 2012; 60: 1067-1076
        • Liao R.
        • Jain M.
        • Teller P.
        • et al.
        Infusion of light chains from patients with cardiac amyloidosis causes diastolic dysfunction in isolated mouse hearts.
        Circulation. 2001; 104: 1594-1597
        • Mishra S.
        • Guan J.
        • Plovie E.
        • et al.
        Human amyloidogenic light chain proteins result in cardiac dysfunction, cell death, and early mortality in zebrafish.
        Am J Physiol Heart Circ Physiol. 2013; 305: H95-H103
        • Palladini G.
        • Lavatelli F.
        • Russo P.
        • et al.
        Circulating amyloidogenic free light chains and serum n-terminal natriuretic peptide type b decrease simultaneously in association with improvement of survival in al.
        Blood. 2006; 107: 3854-3858
        • Suhr O.B.
        • Anan I.
        • Backman C.
        • et al.
        Do troponin and b-natriuretic peptide detect cardiomyopathy in transthyretin amyloidosis?.
        J Intern Med. 2008; 263: 294-301
        • Rapezzi C.
        • Merlini G.
        • Quarta C.C.
        • et al.
        Systemic cardiac amyloidoses: disease profiles and clinical courses of the 3 main types.
        Circulation. 2009; 120: 1203-1212
        • Fontana M.
        • Chung R.
        • Hawkins P.N.
        • et al.
        Cardiovascular magnetic resonance for amyloidosis.
        Heart Fail Rev. 2015; 20: 133-144
        • Vrana J.A.
        • Gamez J.D.
        • Madden B.J.
        • et al.
        Classification of amyloidosis by laser microdissection and mass spectrometry-based proteomic analysis in clinical biopsy specimens.
        Blood. 2009; 114: 4957-4959
        • Stats M.A.
        • Stone J.R.
        Varying levels of small microcalcifications and macrophages in attr and al cardiac amyloidosis: implications for utilizing nuclear medicine studies to subtype amyloidosis.
        Cardiovasc Pathol. 2016; 25: 413-417
        • Hongo M.
        • Hirayama J.
        • Fujii T.
        • et al.
        Early identification of amyloid heart disease by technetium-99m-pyrophosphate scintigraphy: a study with familial amyloid polyneuropathy.
        Am Heart J. 1987; 113: 654-662
        • Bokhari S.
        • Castano A.
        • Pozniakoff T.
        • et al.
        99m)tc-pyrophosphate scintigraphy for differentiating light-chain cardiac amyloidosis from the transthyretin-related familial and senile cardiac amyloidoses.
        Circ Cardiovasc Imaging. 2013; 6: 195-201
        • Perugini E.
        • Guidalotti P.L.
        • Salvi F.
        • et al.
        Noninvasive etiologic diagnosis of cardiac amyloidosis using 99mtc-3,3-diphosphono-1,2-propanodicarboxylic acid scintigraphy.
        J Am Coll Cardiol. 2005; 46: 1076-1084
        • Galat A.
        • Rosso J.
        • Guellich A.
        • et al.
        Usefulness of (99m)tc-hmdp scintigraphy for the etiologic diagnosis and prognosis of cardiac amyloidosis.
        Amyloid. 2015; 22: 210-220
        • Cappelli F.
        • Gallini C.
        • Di Mario C.
        • et al.
        Accuracy of 99mtc-hydroxymethylene diphosphonate scintigraphy for diagnosis of transthyretin cardiac amyloidosis.
        J Nucl Cardiol. 2019; 26: 497-504
        • Gillmore J.D.
        • Maurer M.S.
        • Falk R.H.
        • et al.
        Nonbiopsy diagnosis of cardiac transthyretin amyloidosis.
        Circulation. 2016; 133: 2404-2412
        • Hobbs J.R.
        • Morgan A.D.
        Fluorescence microscopy with thioflavine-t in the diagnosis of amyloid.
        J Pathol Bacteriol. 1963; 86: 437-442
        • Klunk W.E.
        • Wang Y.
        • Huang G.F.
        • et al.
        Uncharged thioflavin-t derivatives bind to amyloid-beta protein with high affinity and readily enter the brain.
        Life Sci. 2001; 69: 1471-1484
        • Biancalana M.
        • Koide S.
        Molecular mechanism of thioflavin-t binding to amyloid fibrils.
        Biochim Biophys Acta. 2010; 1804: 1405-1412
        • Khurana R.
        • Coleman C.
        • Ionescu-Zanetti C.
        • et al.
        Mechanism of thioflavin t binding to amyloid fibrils.
        J Struct Biol. 2005; 151: 229-238
        • Klunk W.E.
        • Engler H.
        • Nordberg A.
        • et al.
        Imaging brain amyloid in alzheimer's disease with pittsburgh compound-b.
        Ann Neurol. 2004; 55: 306-319
        • Law W.P.
        • Wang W.Y.
        • Moore P.T.
        • et al.
        Cardiac amyloid imaging with 18f-florbetaben pet: a pilot study.
        J Nucl Med. 2016; 57: 1733-1739
        • Clark C.M.
        • Schneider J.A.
        • Bedell B.J.
        • et al.
        Use of florbetapir-pet for imaging beta-amyloid pathology.
        JAMA. 2011; 305: 275-283
        • Antoni G.
        • Lubberink M.
        • Estrada S.
        • et al.
        In vivo visualization of amyloid deposits in the heart with 11c-pib and pet.
        J Nucl Med. 2013; 54: 213-220
        • Park M.A.
        • Padera R.F.
        • Belanger A.
        • et al.
        18f-florbetapir binds specifically to myocardial light chain and transthyretin amyloid deposits: autoradiography study.
        Circ Cardiovasc Imaging. 2015; 8 (10.1161/CIRCIMAGING.114.002954 e002954)
        • Dorbala S.
        • Vangala D.
        • Semer J.
        • et al.
        Imaging cardiac amyloidosis: a pilot study using (1)(8)f-florbetapir positron emission tomography.
        Eur J Nucl Med Mol Imaging. 2014; 41: 1652-1662
        • Dietemann S.
        • Nkoulou R.
        Amyloid pet imaging in cardiac amyloidosis: a pilot study using (18)f-flutemetamol positron emission tomography.
        Ann Nucl Med. 2019; 33: 624-628
        • Cuddy S.A.M.
        • Bravo P.E.
        • Falk R.H.
        • et al.
        Improved quantification of cardiac amyloid burden in systemic light chain amyloidosis: redefining early disease?.
        JACC Cardiovasc Imaging. 2020; 13: 1325-1336