Advertisement
Review Article| Volume 16, ISSUE 2, P233-247, April 2021

Preclinical Evaluation of TSPO and MAO-B PET Radiotracers in an LPS Model of Neuroinflammation

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to PET Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Lyman M.
        • Lloyd D.G.
        • Ji X.
        • et al.
        Neuroinflammation: the role and consequences.
        Neurosci Res. 2014; 79: 1-12
        • Ransohoff R.M.
        How neuroinflammation contributes to neurodegeneration.
        Science. 2016; 353: 777-783
        • Narayanaswami V.
        • Dahl K.
        • Bernard-Gauthier V.
        • et al.
        Emerging PET radiotracers and targets for imaging of neuroinflammation in neurodegenerative diseases: outlook beyond TSPO.
        Mol Imaging. 2018; 17 (1536012118792317)
        • Werry E.L.
        • Bright F.M.
        • Piguet O.
        • et al.
        Recent developments in TSPO PET imaging as a biomarker of neuroinflammation in neurodegenerative disorders.
        Int J Mol Sci. 2019; 20: 3161
        • Ramesh G.
        • MacLean A.G.
        • Philipp M.T.
        Cytokines and chemokines at the crossroads of neuroinflammation, neurodegeneration, and neuropathic pain.
        Mediators Inflamm. 2013; 2013: 480739
        • Kempuraj D.
        • Thangavel R.
        • Natteru P.A.
        • et al.
        Neuroinflammation induces neurodegeneration.
        J Neurol Neurosurg Spine. 2016; 1: 1003
        • O’Callaghan J.P.
        • Sriram K.
        • Miller D.B.
        Defining “neuroinflammation”.
        Ann N Y Acad Sci. 2008; 1139: 318-330
        • Heneka M.T.
        • Kummer M.P.
        • Latz E.
        Innate immune activation in neurodegenerative disease.
        Nat Rev Immunol. 2014; 14: 463-477
        • DiSabato D.J.
        • Quan N.
        • Godbout J.P.
        Neuroinflammation: the devil is in the details.
        J Neurochem. 2016; 139: 136-153
        • Glass C.K.
        • Saijo K.
        • Winner B.
        • et al.
        Mechanisms underlying inflammation in neurodegeneration.
        Cell. 2010; 140: 918-934
        • Skaper S.D.
        • Giusti P.
        • Facci L.
        Microglia and mast cells: two tracks on the road to neuroinflammation.
        FASEB J. 2012; 26: 3103-3117
        • González H.
        • Elgueta D.
        • Montoya A.
        • et al.
        Neuroimmune regulation of microglial activity involved in neuroinflammation and neurodegenerative diseases.
        J Neuroimmunol. 2014; 274: 1-13
        • Meeter L.H.
        • Kaat L.D.
        • Rohrer J.D.
        • et al.
        Imaging and fluid biomarkers in frontotemporal dementia.
        Nat Rev Neurol. 2017; 13: 406-419
        • Zlokovic B.V.
        The blood-brain barrier in health and chronic neurodegenerative disorders.
        Neuron. 2008; 57: 178-201
        • Sweeney M.D.
        • Sagare A.P.
        • Zlokovic B.V.
        Blood-brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders.
        Nat Rev Neurol. 2018; 14: 133-150
        • Zinnhardt B.
        • Wiesmann M.
        • Honold L.
        • et al.
        In vivo imaging biomarkers of neuroinflammation in the development and assessment of stroke therapies - towards clinical translation.
        Theranostics. 2018; 8: 2603-2620
        • Jack Jr., C.R.
        • Bennett D.A.
        • Blennow K.
        • et al.
        NIA-AA research framework: toward a biological definition of Alzheimer's disease.
        Alzheimers Dement. 2018; 14: 535-562
        • Mattner F.
        • Katsifis A.
        • Staykova M.
        • et al.
        Evaluation of a radiolabelled peripheral benzodiazepine receptor ligand in the central nervous system inflammation of experimental autoimmune encephalomyelitis: a possible probe for imaging multiple sclerosis.
        Eur J Nucl Med Mol Imaging. 2005; 32: 557-563
        • Martin A.
        • Boisgard R.
        • Theze B.
        • et al.
        Evaluation of the PBR/TSPO radioligand [18F]DPA-714 in a rat model of focal cerebral ischemia.
        J Cereb Blood Flow Metab. 2010; 30: 230-241
        • Dedeurwaerdere S.
        • Callaghan P.D.
        • Pham T.
        • et al.
        PET imaging of brain inflammation during early epileptogenesis in a rat model of temporal lobe epilepsy.
        EJNMMI Res. 2012; 2: 60
        • Brendel M.
        • Probst F.
        • Jaworska A.
        • et al.
        Glial activation and glucose metabolism in a transgenic amyloid mouse model: a triple-tracer PET study.
        J Nucl Med. 2016; 57: 954-960
        • Israel I.
        • Ohsiek A.
        • Al-Momani E.
        • et al.
        Combined [18F]DPA-714 micro-positron emission tomography and autoradiography imaging of microglia activation after closed head injury in mice.
        J Neuroinflammation. 2016; 13: 140
        • Mirzaei N.
        • Tang S.P.
        • Ashworth S.
        • et al.
        In vivo imaging of microglial activation by positron emission tomography with [11C]PBR28 in the 5XFAD model of Alzheimer’s disease.
        Glia. 2016; 64: 993-1006
        • Cumming P.
        • Burgher B.
        • Patkar O.
        • et al.
        Sifting through the surfeit of neuroinflammation tracers.
        J Cereb Blood Flow Metab. 2018; 38: 204-224
        • Tong J.
        • Williams B.
        • Rusjan P.M.
        • et al.
        Concentration, distribution, and influence of aging on the 18 kDa translocator protein in human brain: implications for brain imaging studies.
        J Cereb Blood Flow Metab. 2020; 40: 1061-1076
        • Alam M.M.
        • Lee J.
        • Lee S.Y.
        Recent progress in the development of TSPO PET ligands for neuroinflammation imaging in neurological diseases.
        Nucl Med Mol Imaging. 2017; 51: 283-296
        • Owen D.R.
        • Howell O.W.
        • Tang S.P.
        • et al.
        Two binding sites for [3H]PBR28 in human brain: implications for TSPO PET imaging of neuroinflammation.
        J Cereb Blood Flow Metab. 2010; 30: 1608-1618
        • Owen D.R.
        • Gunn R.N.
        • Rabiner E.A.
        • et al.
        Mixed-affinity binding in humans with 18-kDa translocator protein ligands.
        J Nucl Med. 2011; 52: 24-32
        • Mizrahi R.
        • Rusjan P.M.
        • Kennedy J.
        • et al.
        Translocator protein (18 kDa) polymorphism (rs6971) explains in-vivo brain binding affinity of the PET radioligand [18F]-FEPPA.
        J Cereb Blood Flow Metab. 2012; 32: 968-972
        • Wilson A.A.
        • Garcia A.
        • Parkes J.
        • et al.
        Radiosynthesis and initial evaluation of [18F]-FEPPA for PET imaging of peripheral benzodiazepine receptors.
        Nucl Med Biol. 2008; 35: 305-314
        • Setiawan E.
        • Attwells S.
        • Wilson A.A.
        • et al.
        Association of translocator protein total distribution volume with duration of untreated major depressive disorder: a cross-sectional study.
        Lancet Psychiatry. 2018; 5: 339-347
        • Da Silva T.
        • Hafizi S.
        • Watts J.J.
        • et al.
        In vivo imaging of translocator protein in long-term cannabis users.
        JAMA Psychiatry. 2019; 76: 1305-1313
        • Zanotti-Fregonara P.
        • Zhang Y.
        • Jenko K.J.
        • et al.
        Synthesis and evaluation of translocator 18 kDa protein (TSPO) positron emission tomography (PET) radioligands with low binding sensitivity to human single nucleotide polymorphism rs6971.
        ACS Chem Neurosci. 2014; 5: 963-971
        • Ikawa M.
        • Lohith T.G.
        • Shrestha S.
        • et al.
        11C-ER176, a radioligand for 18-kDa translocator protein, has adequate sensitivity to robustly image all three affinity genotypes in human brain. biomarkers consortium radioligand project team.
        J Nucl Med. 2017; 58: 320-325
        • Fujita M.
        • Kobayashi M.
        • Ikawa M.
        • et al.
        Comparison of four 11C-labeled PET ligands to quantify translocator protein 18 kDa (TSPO) in human brain: (R)-PK11195, PBR28, DPA-713, and ER176-based on recent publications that measured specific-to-non-displaceable ratios.
        EJNMMI Res. 2017; 7: 84
        • Zanotti-Fregonara P.
        • Pascual B.
        • Rostomily R.C.
        • et al.
        Anatomy of 18F-GE180, a failed radioligand for the TSPO protein.
        Eur J Nucl Med Mol Imaging. 2020; (Online ahead of print)https://doi.org/10.1007/s00259-020-04732-y
        • Guilarte T.R.
        • Kuhlmann A.C.
        • O’Callaghan J.P.
        • et al.
        Enhanced expression of peripheral benzodiazepine receptors in trimethyltin-exposed rat brain: a biomarker of neurotoxicity.
        Neurotoxicology. 1995; 16: 441-450
        • Geloso M.C.
        • Corvino V.
        • Marchese E.
        • et al.
        The dual role of microglia in ALS: mechanisms and therapeutic.
        Front Aging Neurosci. 2017; https://doi.org/10.3389/fnagi.2017.00242
        • Liddelow S.A.
        • Barres B.A.
        Reactive astrocytes: production, function, and therapeutic potential.
        Immunity. 2017; 46: 957-967
        • Boche D.
        • Gerhard A.
        • Rodriguez-Vieitez E.
        • et al.
        Prospects and challenges of imaging neuroinflammation beyond TSPO in Alzheimer's disease.
        Eur J Nucl Med Mol Imaging. 2019; 46: 2831-2847
        • Tong J.
        • Rathitharan G.
        • Meyer J.H.
        • et al.
        Brain monoamine oxidase B and A in human parkinsonian dopamine deficiency disorders.
        Brain. 2017; 140: 2460-2474
        • Ekblom J.
        • Jossan S.S.
        • Bergstrom M.
        • et al.
        Monoamine oxidase-B in astrocytes.
        Glia. 1993; 8: 122-132
        • Olsen M.
        • Aguilar X.
        • Sehlin D.
        • et al.
        Astroglial responses to amyloid-beta progression in a mouse model of alzheimer's disease.
        Mol Imaging Biol. 2018; 20: 605-614
        • Carter S.F.
        • Schoell M.
        • Almkvist O.
        • et al.
        (2012) Evi-dence for astrocytosis in prodromal Alzheimer disease provided by 11C-deuterium-L-deprenyl: a multitracer PET paradigm combining 11C-Pittsburgh compound B and 18F-FDG.
        J Nucl Med. 2012; 53: 37-46
        • Narayanaswami V.
        • Drake L.R.
        • Brooks A.F.
        • et al.
        Classics in neuroimaging: development of PET tracers for imaging monoamine oxidases.
        ACS Chem Neurosci. 2019; 10: 1867-1871
        • Fowler J.S.
        • MacGregor R.R.
        • Wolf A.P.
        • et al.
        Mapping human brain monoamine oxidase A and B with 11C-labeled suicide inactivators and PET.
        Science. 1987; 235: 481-485
        • Fowler J.S.
        • Wolf A.P.
        • MacGregor R.R.
        • et al.
        Mechanistic positron emission tomography studies: demonstration of a deuterium isotope effect in the monoamine oxidase-catalyzed binding of [11C]L-deprenyl in living baboon brain.
        J Neurochem. 1988; 51: 1524-1534
        • Logan J.
        • Fowler J.S.
        • Volkow N.D.
        • et al.
        Reproducibility of repeated measures of deuterium substituted [11C]L-deprenyl ([11C]L-deprenyl-D2) binding in the human brain.
        Nucl Med Biol. 2000; 27: 43-49
        • Fowler J.S.
        • Wang G.J.
        • Logan J.
        • et al.
        Selective reduction of radiotracer trapping by deuterium substitution: comparison of carbon-11-L-deprenyl and carbon-11-deprenyl-D2 for MAO B mapping.
        J Nucl Med. 1995; 36: 1255-1262
        • Carter S.F.
        • Chiotis K.
        • Nordberg A.
        • et al.
        Longitudinal association between astrocyte function and glucose metabolism in autosomal dominant Alzheimer's disease.
        Eur J Nucl Med Mol Imaging. 2019; 46: 348-356
        • Cumming P.
        • Yokoi F.
        • Chen A.
        • et al.
        Pharmacokinetics of radiotracers in human plasma during positron emission tomography.
        Synapse. 1999; 34: 124-134
        • Rusjan P.M.
        • Wilson A.A.
        • Miller L.
        • et al.
        Kinetic modeling of the monoamine oxidase B radioligand [11C]SL25.1188 in human brain with high-resolution positron emission tomography.
        J Cereb Blood Flow Metab. 2014; 34: 883-889
        • Vasdev N.
        • Sadovski O.
        • Garcia A.
        • et al.
        Radiosynthesis of [11C]SL25.1188 via [11C]CO2 fixation for imaging monoamine oxidase B.
        J Label Compd Radiopharm. 2011; 54: 678-680
        • Moriguchi S.
        • Wilson A.A.
        • Miler L.
        • et al.
        Monoamine oxidase B total distribution volume in the prefrontal cortex of major depressive disorder: an [11C]SL25.1188 positron emission tomography study.
        JAMA Psychiatry. 2019; 76: 634-641
        • Si X.
        • Miguel-Hidalgo J.J.
        • O'Dwyer G.
        • et al.
        Age-dependent reductions in the level of glial fibrillary acidic protein in the prefrontal cortex in major depression.
        Neuropsychopharmacology. 2004; 29: 2088-2096
        • Rajkowska G.
        • Stockmeier C.A.
        Astrocyte pathology in major depressive disorder: insights from human postmortem brain tissue.
        Curr Drug Targets. 2013; 14: 1225-1236
        • Ambrosini A.
        • Louin G.
        • Croci N.
        • et al.
        Characterization of a rat model to study acute neuroinflammation on histopathological, biochemical and functional outcomes.
        J Neurosci Methods. 2005; 144: 183-191
        • Russo I.
        • Barlati S.
        • Bosetti F.
        Effects of neuroinflammation on the regenerative capacity of brain stem cells.
        J Neurochem. 2011; 116: 947-956
        • Batista C.R.A.
        • Gomes G.F.
        • Candelario-Jalil E.
        • et al.
        Lipopolysaccharide-induced neuroinflammation as a bridge to understand neurodegeneration.
        Int J Mol Sci. 2019; 20: 2293
        • Bonow R.H.
        • Aid S.
        • Zhang Y.
        • et al.
        The brain expression of genes involved in inflammatory response, the ribosome, and learning and memory is altered by centrally injected lipopolysaccharide in mice.
        Pharmacogenomics J. 2009; 9: 116-126
        • Ory D.
        • Planas A.
        • Dresselaers T.
        • et al.
        PET imaging of TSPO in a rat model of local neuroinflammation induced by intracerebral injection of lipopolysaccharide.
        Nucl Med Biol. 2015; 42: 753-761
        • Paxinos G.
        • Watson C.
        The rat brain in stereotaxic coordinates.
        4th edition. Academic Press, San Diego (CA)1998
        • Buccino P.
        • Kreimerman I.
        • Zirbesegger K.
        • et al.
        Automated radiosynthesis of [(11)C]L-deprenyl-D2 and [(11)C]D-deprenyl using a commercial platform.
        Appl Radiat Isot. 2016; 110: 47-52
        • Narayanaswami V.
        • Tong J.
        • Fiorino F.
        • et al.
        Synthesis, in vitro and in vivo evaluation of 11C-O-methylated arylpiperazines as potential serotonin 1A (5-HT1A) receptor antagonist radiotracers.
        EJNMMI Radiopharm Chem. 2020; 5: 13
        • Defrise M.
        • Kinahan P.E.
        • Townsend D.W.
        • et al.
        Exact and approximate rebinning algorithms for 3-D PET data.
        IEEE Trans Med Imaging. 1997; 16: 145-158
        • Schwarz A.J.
        • Danckaert A.
        • Reese T.
        • et al.
        A stereotaxic MRI template set for the rat brain with tissue class distribution maps and co-registered anatomical atlas: application to pharmacological MRI.
        Neuroimage. 2006; 15: 538-550
        • Gunn R.N.
        • Lammertsma A.A.
        • Hume S.P.
        • et al.
        Parametric imaging of ligand-receptor binding in PET using a simplified reference region model.
        Neuroimage. 1997; 6: 279-287
        • Rodriguez-Vieitez E.
        • Ni R.
        • Gulyás B.
        • et al.
        Astrocytosis precedes amyloid plaque deposition in Alzheimer APPswe transgenic mouse brain: a correlative positron emission tomography and in vitro imaging study.
        Eur J Nucl Med Mol Imaging. 2015; 42: 1119-1132
        • Johansson A.
        • Engler H.
        • Blomquist G.
        • et al.
        Evidence for astrocytosis in ALS demonstrated by [11C](L)-deprenyl-D2 PET.
        J Neurol Sci. 2007; 255: 17-22
        • Santillo A.F.
        • Gambini J.P.
        • Lannfelt L.
        • et al.
        In vivo imaging of astrocytosis in Alzheimer's disease: an 11C-L-deuteriodeprenyl and PIB PET study.
        Eur J Nucl Med Mol Imaging. 2011; 38: 2202-2208
        • Venneti S.
        • Lopresti B.J.
        • Wang G.
        • et al.
        A comparison of the high-affinity peripheral benzodiazepine receptor ligands DAA1106 and (R)-PK11195 in rat models of neuroinflammation: implications for PET imaging of microglial activation.
        J Neurochem. 2007; 102: 2118-2131
        • Dickens A.M.
        • Vainio S.
        • Marjamäki P.
        • et al.
        Detection of microglial activation in an acute model of neuroinflammation using PET and radiotracers 11C-(R)-PK11195 and 18F-GE-180.
        J Nucl Med. 2014; 55: 466-472
        • Perrone M.
        • Moon B.S.
        • Park H.S.
        • et al.
        A novel PET imaging probe for the detection and monitoring of translocator protein 18 kDa expression in pathological disorders.
        Sci Rep. 2016; 6: 20422
        • Sridharan S.
        • Lepelletier F.X.
        • Trigg W.
        • et al.
        Comparative evaluation of three TSPO PET radiotracers in a LPS-induced model of mild neuroinflammation in rats.
        Mol Imaging Biol. 2017; 19: 77-89
        • Moon B.S.
        • Jung J.H.
        • Park H.S.
        • et al.
        Preclinical comparison study between [18F]fluoromethyl-PBR28 and its deuterated analog in a rat model of neuroinflammation.
        Bioorg Med Chem Lett. 2018; 28: 2925-2929
        • Stern E.L.
        • Quan N.
        • Proescholdt M.G.
        • et al.
        Spatiotemporal induction patterns of cytokine and related immune signal molecule mRNAs in response to intrastriatal injection of lipopolysaccharide.
        J Neuroimmunol. 2000; 106: 114-129
        • Herrera A.J.
        • Castaño A.
        • Venero J.L.
        • et al.
        The single intranigral injection of LPS as a new model for studying the selective effects of inflammatory reactions on dopaminergic system.
        Neurobiol Dis. 2000; 7: 429-447
        • Choi D.Y.
        • Liu M.
        • Hunter R.L.
        • et al.
        Striatal neuroinflammation promotes Parkinsonism in rats.
        PLoS One. 2009; 4: e5482
        • Concannon R.M.
        • Okine B.N.
        • Finn D.P.
        • et al.
        Differential upregulation of the cannabinoid CB₂ receptor in neurotoxic and inflammation-driven rat models of Parkinson's disease.
        Exp Neurol. 2015; 269: 133-141
        • Brackhan M.
        • Bascunana P.
        • Postema J.M.
        • et al.
        Serial quantitative TSPO-targeted PET reveals peak microglial activation up to 2 weeks after an epileptogenic brain insult.
        J Nucl Med. 2016; 57: 1302-1308
        • Yankam Njiwa J.
        • Costes N.
        • Bouillot C.
        • et al.
        Quantitative longitudinal imaging of activated microglia as a marker of inflammation in the pilocarpine rat model of epilepsy using [11C]-(R)-PK11195 PET and MRI.
        J Cereb Blood Flow Metab. 2016; 37: 1251-1263
        • Russmann V.
        • Brendel M.
        • Mille E.
        • et al.
        Identification of brain regions predicting epilep- togenesis by serial [(18)F]GE-180 positron emission tomography imaging of neuroinflammation in a rat model of temporal lobe ep- ilepsy.
        Neuroimage Clin. 2017; 15: 35-44
        • Bergström M.
        • Kumlien E.
        • Lilja A.
        • et al.
        Temporal lobe epilepsy visualized with PET with 11C-L-deuterium-deprenyl–analysis of kinetic data.
        Acta Neurol Scand. 1998; 98: 224-231
        • Kumlien E.
        • Nilsson A.
        • Hagberg G.
        • et al.
        PET with 11C-deuterium-deprenyl and 18F-FDG in focal epilepsy.
        Acta Neurol Scand. 2001; 103: 360-366
        • Bascuñana P.
        • Gendron T.
        • Sander K.
        • et al.
        Ex vivo characterization of neuroinflammatory and neuroreceptor changes during epileptogenesis using candidate positron emission tomography biomarkers.
        Epilepsia. 2019; 60: 2325-2333
        • Gendron T.
        • Sander K.
        • Cybulska K.
        • et al.
        Ring-closing synthesis of dibenzothiophene sulfonium salts and their use as leaving groups for aromatic (18)F-fluorination.
        J Am Chem Soc. 2018; 140: 11125-11132
        • Bramoullé Y.
        • Puech F.
        • Saba W.
        • et al.
        Radiosynthesis of (S)-5-methoxymethyl-3-[6-(4,4,4-trifluorobutoxy)benzo[d]isoxazol-3-yl] oxazolidin-2-[11C]one ([11C]SL25.1188), a novel radioligand for imaging monoamine oxidase-B with PET.
        J Label Compd Radiopharm. 2008; 51: 153-158
        • Saba W.
        • Valette H.
        • Peyronneau M.A.
        • et al.
        [(11)C]SL25.1188, a new reversible radioligand to study the monoamine oxidase type B with PET: preclinical characterisation in nonhuman primate.
        Synapse. 2010; 64: 61-69
        • Novaroli L.
        • Daina A.
        • Favre E.
        • et al.
        Impact of species-dependent differences on screening, design, and development of MAO B inhibitors.
        J Med Chem. 2006; 49: 6264-6272
        • Lavisse S.
        • Guillermier M.
        • Herard A.S.
        • et al.
        Reactive astrocytes overexpress TSPO and are detected by TSPO positron emission tomography imaging.
        J Neurosci. 2012; 32: 10809-10818
        • Pannell M.
        • Economopoulos V.
        • Wilson T.C.
        • et al.
        Imaging of translocator protein upregulation is selective for pro-inflammatory polarized astrocytes and microglia.
        Glia. 2020; 68: 280-297
        • Tournier B.B.
        • Tsartsalis S.
        • Ceyzériat K.
        • et al.
        Fluorescence-activated cell sorting to reveal the cell origin of radioligand binding.
        J Cereb Blood Flow Metab. 2020; 40: 1242-1255
        • Liddelow S.
        • Guttenplan K.
        • Clarke L.
        • et al.
        Neurotoxic reactive astrocytes are induced by activated microglia.
        Nature. 2017; 541: 481-487
        • Jha M.K.
        • Kim J.H.
        • Song G.J.
        • et al.
        Functional dissection of astrocyte-secreted proteins: implications in brain health and diseases.
        Prog Neurobiol. 2018; 162: 37-69
        • Janssen B.
        • Vugts D.J.
        • Windhorst A.D.
        • et al.
        PET imaging of microglial activation-beyond targeting TSPO.
        Molecules. 2018; 23: 607
        • Wilson H.
        • Dervenoulas G.
        • Pagano G.
        • et al.
        Imidazoline 2 binding sites reflecting astroglia pathology in Parkinson's disease: an in vivo 11C-BU99008 PET study.
        Brain. 2019; 142: 3116-3128
        • Keller B.
        • García-Sevilla J.A.
        Immunodetection and subcellular distribution of imidazoline receptor proteins with three antibodies in mouse and human brains: effects of treatments with I1- and I2-imidazoline drugs.
        J Psychopharmacol. 2015; 29: 996-1012
        • Vignal N.
        • Cisternino S.
        • Rizzo-Padoin N.
        • et al.
        [18F]FEPPA a TSPO radioligand: optimized radiosynthesis and evaluation as a PET radiotracer for brain inflammation in a peripheral LPS-injected mouse model.
        Molecules. 2018; 23: 1375