Advertisement
Review Article| Volume 16, ISSUE 2, P261-272, April 2021

Molecular Imaging of Neurodegenerative Parkinsonism

  • Kirk A. Frey
    Correspondence
    Corresponding author. Department of Radiology (Nuclear Medicine and Molecular Imaging), University of Michigan, 1500 East Medical Center Drive, Room B1-G505 UH, Ann Arbor, MI 48109-5028.
    Affiliations
    Department of Radiology (Nuclear Medicine and Molecular Imaging), University of Michigan, 1500 East Medical Center Drive, Room B1-G505 UH, Ann Arbor, MI 48109-5028, USA

    Department of Neurology, University of Michigan, 1500 East Medical Center Drive, Room B1-G505 UH, Ann Arbor, MI 48109-5028, USA
    Search for articles by this author
  • Nicolaas I.L.J. Bohnen
    Affiliations
    Department of Radiology (Nuclear Medicine and Molecular Imaging), University of Michigan, 24 Frank Lloyd Wright Drive, Box 362, Ann Arbor, MI 48105, USA

    Department of Neurology, University of Michigan, 24 Frank Lloyd Wright Drive, Box 362, Ann Arbor, MI 48105, USA

    Ann Arbor Veterans Administration Medical Center, Ann Arbor, MI, USA
    Search for articles by this author
Published:February 12, 2021DOI:https://doi.org/10.1016/j.cpet.2020.12.002

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to PET Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Joutsa J.
        • Gardberg M.
        • Röyttä M.
        • et al.
        Diagnostic accuracy of parkinsonism syndromes by general neurologists.
        Parkinsonism Relat Disord+. 2014; 20: 840-844
        • Tolosa E.
        • Wenning G.
        • Poewe W.
        The diagnosis of Parkinson's disease.
        Lancet Neurol. 2006; 5: 75-86
        • Hughes A.J.
        • Daniel S.E.
        • Ben-Shlomo Y.
        • et al.
        The accuracy of diagnosis of parkinsonian syndromes in a specialist movement disorder service.
        Brain. 2002; 125: 861-870
      1. Parkinson, J. An essay on the shaking palsy. London, Sherwood, Neely and Jones, 1817. Hovever, this is pretty difficult to locate in most library resources. The monograph was re-printed verbatum on pages 145-218 of the book: Critchley M, James Parkinson, London. MacMillan & Co, LTD, 1955.

        • Obeso J.A.
        • Stamelou M.
        • Goetz C.G.
        • et al.
        Past, present, and future of Parkinson's disease: a special essay on the 200th Anniversary of the Shaking Palsy. [Review].
        Mov Disord. 2017; 32: 1264-1310
        • Gelb D.J.
        • Oliver E.
        • Gilman S.
        Diagnostic criteria for Parkinson’s disease.
        Arch Neurol. 1999; 56: 33-39
        • Dickson D.W.
        • Braak H.
        • Duda J.E.
        • et al.
        Neuropathological assessment of Parkinson’s disease: refining the diagnostic criteria.
        Lancet Neurol. 2009; 8: 1150-1157
        • Braak H.
        • Del Tredici K.
        • Rüb U.
        • et al.
        Staging of brain pathology related to sporadic Parkinson’s disease.
        Neurobiol Aging. 2003; 24: 197-211
        • Spillantini M.G.
        • Schmidt M.L.
        • Lee V.M.-Y.
        • et al.
        α-Synuclein in Lewy bodies.
        Nature. 1997; 388: 839-840
        • Beach T.G.
        • Adler C.H.
        • Lue L.
        • et al.
        Unified staging system for Lewy body disorders: correlation with nigrostriatal degeneration, cognitive impairment and motor dysfunction.
        Acta Neuropathol. 2009; 117: 613-634
        • Langston J.W.
        The Parkinson's complex: parkinsonism is just the tip of the iceberg.
        Ann Neurol. 2006; 59: 591-596
        • Ozawa T.
        • Paviour D.
        • Quinn N.P.
        • et al.
        The spectrum of pathological involvement of the striatonigral and olivopontocerebellar systems in multiple system atrophy: clinicopathological correlations.
        Brain. 2004; 127: 2657-2671
        • Gilman S.
        • Wenning G.K.
        • Low P.A.
        • et al.
        Second consensus statement on the diagnosis of multiple system atrophy.
        Neurology. 2008; 71: 670-676
        • Koga S.
        • Dickson D.W.
        Recent advances in neuropathology, biomarkers and therapeutic approach of multiple system atrophy. [Review].
        J Neurol Neurosurg Psychiatr. 2018; 89: 175-184
        • Papp M.I.
        • Kahn J.E.
        • Lantos P.L.
        Glial cytoplasmic inclusions in the CNS of patients with multiple system atrophy (striatonigral degeneration, olivopontocerebellar atrophy and Shy–Drager syndrome).
        J Neurol Sci. 1989; 94: 79-100
        • Inoue M.
        • Yagishita S.
        • Ryo M.
        • et al.
        The distribution and dynamic density of oligodendroglial cytoplasmic inclusions (GCIs) in multiple system atrophy: a correlation between the density of GCIs and the degree of involvement of striatonigral and olivopontocerebellar systems.
        Acta Neuropathol. 1997; 93: 585-591
        • Wakabayashi K.
        • Yoshimoto M.
        • Tsuji S.
        • et al.
        Alpha-synuclein immunoreactivity in glial cytoplasmic inclusions in multiple system atrophy.
        Neurosci Lett. 1998; 249: 180-182
        • Spillantini M.G.
        • Crowther R.A.
        • Jakes R.
        • et al.
        Filamentous alpha-synuclein inclusions link multiple system atrophy with Parkinson’s disease and dementia with Lewy bodies.
        Neurosci Lett. 1998; 251: 205-208
        • Dickson D.W.
        • Lin W.
        • Liu W.K.
        • et al.
        Multiple system atrophy: a sporadic synucleinopathy.
        Brain Pathol. 1999; 9: 721-732
        • Dickson D.W.
        • Liu W.
        • Hardy J.
        • et al.
        Widespread alterations of alpha-synuclein in multiple system atrophy.
        Am J Pathol. 1999; 155: 1241-1251
        • Halliday G.M.
        • Holton J.L.
        • Revesz T.
        • et al.
        Neuropathology underlying clinical variability in patients with synucleinopathies.
        Acta Neuropathol. 2011; 122: 187-204
        • Cykowski M.D.
        • Coon E.A.
        • Powell S.Z.
        • et al.
        Expanding the spectrum of neuronal pathology in multiple system atrophy.
        Brain. 2015; 138: 2293-2309
        • Litvan I.
        • Agid Y.
        • Calne D.
        • et al.
        Clinical research criteria for the diagnosis of progressive supranuclear palsy (Steele-Richardson-Olszewski syndrome): report of the NINDS-SPSP international workshop.
        Neurology. 1996; 47: 1-9
        • Boxer A.L.
        • Yu J.T.
        • Golbe L.I.
        • et al.
        Advances in progressive supranuclear palsy: new diagnostic criteria, biomarkers, and therapeutic approaches. [Review].
        Lancet Neurol. 2017; 16: 552-563
        • Dickson D.W.
        • Ahmed Z.
        • Algom A.A.
        • et al.
        Neuropathology of variants of progressive supranuclear palsy. [Review].
        Curr Opin Neurol. 2010; 23: 394-400
        • Dickson D.W.
        • Kouri N.
        • Murray M.E.
        • et al.
        Neuropathology of frontotemporal lobar degeneration-tau (FTLD-tau). [Review].
        J Mol Neurosci. 2011; 45: 384-389
        • Dickson D.W.
        Parkinson's disease and parkinsonism: neuropathology.
        Cold Spring Harb Perspect Med. 2012; 2: a009258
        • Koga S.
        • Parks A.
        • Kasanuki K.
        • et al.
        Cognitive impairment in progressive supranuclear palsy is associated with tau burden.
        Mov Disord. 2017; 32: 1772-1779
        • Mathew R.
        • Bak T.H.
        • Hodges J.R.
        Diagnostic criteria for corticobasal syndrome: a comparative study.
        J Neurol Neurosurg Psychiatr. 2012; 83: 405-410
        • Alexander S.K.
        • Rittman T.
        • Xuereb J.H.
        • et al.
        Validation of the new consensus criteria for the diagnosis of corticobasal degeneration.
        J Neurol Neurosurg Psychiatr. 2014; 85: 925-929
        • Komori T.
        • Arai N.
        • Oda M.
        • et al.
        Astrocytic plaques and tufts of abnormal fibers do not coexist in corticobasal degeneration and progressive supranuclear palsy.
        Acta Neuropathol. 1998; 96: 401-408
        • Kouri N.
        • Whitwell J.L.
        • Josephs K.A.
        • et al.
        Corticobasal degeneration: a pathologically distinct 4R tauopathy.
        Nat Rev Neurol. 2011; 7: 263-272
        • Eckert T.
        • Barnes A.
        • Dhawan V.
        • et al.
        FDG PET in the differential diagnosis of parkinsonian disorders.
        Neuroimage. 2005; 26: 912-921
        • Peralta C.
        • Biafore F.
        • Depetris T.S.
        • et al.
        Recent advancement and clinical implications of 18FDG-PET in Parkinson's disease, atypical parkinsonisms, and other movement disorders. [Review].
        Curr Neurol Neurosci Rep. 2019; 19: 06
        • Gilman S.
        Functional imaging with positron emission tomography in multiple system atrophy.
        J Neural Transm (Vienna). 2005; 112: 1647-1655
        • Pardini M.
        • Huey E.D.
        • Spina S.
        • et al.
        FDG-PET patterns associated with underlying pathology in corticobasal syndrome.
        Neurology. 2019; 92: e1121-e1135
        • Teune L.K.
        • Renken R.J.
        • Mudali D.
        • et al.
        Validation of parkinsonian disease-related metabolic brain patterns.
        Mov Disord. 2013; 28: 547-551
        • Tripathi M.
        • Tang C.C.
        • Feigin A.
        • et al.
        Automated differential diagnosis of early parkinsonism using metabolic brain networks: a validation study.
        J Nucl Med. 2016; 57: 60-66
        • Caminiti S.P.
        • Alongi P.
        • Majno L.
        • et al.
        Evaluation of an optimized [18 F]fluoro-deoxy-glucose positron emission tomography voxel-wise method to early support differential diagnosis in atypical Parkinsonian disorders.
        Eur J Neurol. 2017; 24: 687-e26
        • Brajkovic L.
        • Kostic V.
        • Sobic-Saranovic D.
        • et al.
        The utility of FDG-PET in the differential diagnosis of Parkinsonism.
        Neurol Res. 2017; 39: 675-684
        • Maiti B.
        • Perlmutter J.S.
        PET imaging in movement disorders. [Review].
        Semin Nucl Med. 2018; 48: 513-524
        • Brooks D.J.
        Molecular imaging of dopamine transporters. [Review].
        Ageing Res Rev. 2016; 30: 114-121
        • Pagano G.
        • Niccolini F.
        • Wilson H.
        • et al.
        Comparison of phosphodiesterase 10A and dopamine transporter levels as markers of disease burden in early Parkinson's disease.
        Mov Disord. 2019; 34: 1505-1515
        • Li W.
        • Lao-Kaim N.P.
        • Roussakis A.A.
        • et al.
        11 C-PE2I and 18 F-Dopa PET for assessing progression rate in Parkinson's: a longitudinal study.
        Mov Disord. 2018; 33: 117-127
        • Fazio P.
        • Svenningsson P.
        • Cselenyi Z.
        • et al.
        Nigrostriatal dopamine transporter availability in early Parkinson's disease.
        Mov Disord. 2018; 33: 592-599
        • Tatsch K.
        • Poepper G.
        Nigrostriatal dopamine terminal imaging with dopamine transporter SPECT: an update. [Review].
        J Nucl Med. 2013; 54: 1331-1338
        • Antonini A.
        • Benti R.
        • De Notaris R.
        • et al.
        123I-Ioflupane/SPECT binding to striatal dopamine transporter (DAT) uptake in patients with Parkinson's disease, multiple system atrophy, and progressive supranuclear palsy.
        Neurol Sci. 2003; 24: 149-150
        • Hammesfahr S.
        • Antke C.
        • Mamlins E.
        • et al.
        FP-CIT and IBZM-SPECT in corticobasal syndrome: results from a clinical follow-up study.
        Neurodegener Dis. 2016; 16: 342-347
        • Kim HWm
        • Kim J.S.
        • Oh M.
        • et al.
        Different loss of dopamine transporter according to subtype of multiple system atrophy.
        Eur J Nucl Med Mol Imaging. 2016; 43: 517-525
        • Bu L.L.
        • Liu F.T.
        • Jiang C.F.
        • et al.
        Patterns of dopamine transporter imaging in subtypes of multiple system atrophy.
        Acta Neurol Scand. 2018; 138: 170-176
        • Payer D.E.
        • Guttman M.
        • Kish S.J.
        • et al.
        D3 dopamine receptor-preferring [11C]PHNO PET imaging in Parkinson patients with dyskinesia.
        Neurology. 2016; 86: 224-230
        • Laruelle M.
        Imaging synaptic neurotransmission with in vivo binding competition techniques: a critical review.
        J Cereb Blood Flow Metab. 2000; 20: 423-451
        • Stoessl A.J.
        Central pharmacokinetics of levodopa: lessons from imaging studies. [Review].
        Mov Disord. 2015; 30: 73-79
        • Quattrone A.
        • Barbagallo G.
        • Cerasa A.
        • et al.
        Neurobiology of placebo effect in Parkinson's disease: what we have learned and where we are going. [Review].
        Mov Disord. 2018; 33: 1213-1227
        • Albin R.L.
        • Koeppe R.A.
        • Bohnen N.I.
        • et al.
        Spared caudal brainstem SERT binding in early Parkinson's disease.
        J Cereb Blood Flow Metab. 2008; 28: 441-444
        • Roussakis A.A.
        • Politis M.
        • Towey D.
        • et al.
        Serotonin-to-dopamine transporter ratios in Parkinson disease: relevance for dyskinesias.
        Neurology. 2016; 86: 1152-1158
        • Pagano G.
        • Niccolini F.
        • Fusar-Poli P.
        • et al.
        Serotonin transporter in Parkinson's disease: a meta-analysis of positron emission tomography studies. [Review].
        Ann Neurol. 2017; 81: 171-180
        • Fu J.F.
        • Klyuzhin I.
        • Liu S.
        • et al.
        Investigation of serotonergic Parkinson's disease-related covariance pattern using [11C]-DASB/PET.
        NeuroImage Clin. 2018; 19: 652-660
        • Maillet A.
        • Krack P.
        • Lhommee E.
        • et al.
        The prominent role of serotonergic degeneration in apathy, anxiety and depression in de novo Parkinson's disease.
        Brain. 2016; 139: 2486-2502
        • Sommerauer M.
        • Fedorova T.D.
        • Hansen A.K.
        • et al.
        Evaluation of the noradrenergic system in Parkinson's disease: an 11C-MeNER PET and neuromelanin MRI study.
        Brain. 2018; 141: 496-504
        • Nahimi A.
        • Sommerauer M.
        • Kinnerup M.B.
        • et al.
        Noradrenergic deficits in Parkinson disease imaged with 11C-MeNER.
        J Nucl Med. 2018; 59: 659-664
        • Sommerauer M.
        • Hansen A.K.
        • Parbo P.
        • et al.
        Decreased noradrenaline transporter density in the motor cortex of Parkinson's disease patients.
        Mov Disord. 2018; 33: 1006-1010
        • Wong K.K.
        • Raffel D.M.
        • Bohnen N.I.
        • et al.
        2-Year natural decline of cardiac sympathetic innervation in idiopathic Parkinson disease studied with 11C-Hydroxyephedrine PET.
        J Nucl Med. 2017; 58: 326-331
        • Bohnen N.I.
        • Kanel P.
        • Muller M.
        Molecular imaging of the cholinergic system in Parkinson's disease.
        Int Rev Neurobiol. 2018; 141: 211-250
        • Petrou M.
        • Frey K.A.
        • Kilbourn M.R.
        • et al.
        In vivo imaging of human cholinergic nerve terminals with (-)-5-18F-fluoroethoxybenzovesamicol: biodistribution, dosimetry, and tracer kinetic analyses.
        J Nucl Med. 2014; 55: 396-404
        • Albin R.L.
        • Bohnen N.I.
        • Muller M.L.T.M.
        • et al.
        Regional vesicular acetylcholine transporter distribution in human brain: a [18 F]fluoroethoxybenzovesamicol positron emission tomography study.
        J Comp Neurol. 2018; 526: 2884-2897
        • Bohnen N.I.
        • Kanel P.
        • Zhou Z.
        • et al.
        Cholinergic system changes of falls and freezing of gait in Parkinson's disease.
        Ann Neurol. 2019; 85: 538-549
        • Quik M.
        • Bordia T.
        • Zhang D.
        • et al.
        Nicotine and nicotinic receptor drugs: potential for Parkinson's disease and drug-induced movement disorders.
        Int Rev Neurobiol. 2015; 124: 247-271
        • Brumberg J.
        • Kusters S.
        • Al-Momani E.
        • et al.
        Cholinergic activity and levodopa-induced dyskinesia: a multitracer molecular imaging study.
        Ann Clin Transl Neurol. 2017; 4: 632-639
        • Fedorova T.D.
        • Seidelin L.B.
        • Knudsen K.
        • et al.
        Decreased intestinal acetylcholinesterase in early Parkinson disease: an 11C-donepezil PET study.
        Neurology. 2017; 88: 775-781
        • Fedorova T.D.
        • Knudsen K.
        • Hartmann B.
        • et al.
        In vivo positron emission tomography imaging of decreased parasympathetic innervation in the gut of vagotomized patients.
        Neurogastroenterol Motil. 2020; 32: e13759
        • Liu S.Y.
        • Wile D.J.
        • Fu J.F.
        • et al.
        The effect of LRRK2 mutations on the cholinergic system in manifest and premanifest stages of Parkinson's disease: a cross-sectional PET study.
        Lancet Neurol. 2018; 17: 309-316
        • Rowe C.C.
        • Villemagne V.L.
        Brain amyloid imaging.
        J Nucl Med. 2011; 52: 1733-1740
        • Mathis C.A.
        • Lopresti B.J.
        • Ikonomovic M.D.
        • et al.
        Small-molecule PET tracers for imaging proteinopathies. [Review].
        Semin Nucl Med. 2017; 47: 553-575
        • Jansen W.J.
        • Ossenkoppele R.
        • Knol D.L.
        • et al.
        Prevalence of cerebral amyloid pathology in persons without dementia: a meta-analysis.
        JAMA. 2015; 313: 1924-1938
        • Jack Jr., C.R.
        • Holtzman D.M.
        Biomarker modeling of Alzheimer's disease.
        Neuron. 2013; 80: 1347-1358
        • Petrou M.
        • Dwamena B.A.
        • Foerster B.R.
        • et al.
        Amyloid deposition in Parkinson’s disease and cognitive impairment: a systematic review.
        Mov Disord. 2015; 30: 928-935
        • Mashima K.
        • Ito D.
        • Kameyama M.
        • et al.
        Extremely low prevalence of amyloid positron emission tomography positivity in Parkinson's disease without dementia.
        Eur Neurol. 2017; 77: 231-237
        • Petrou M.
        • Bohnen N.I.
        • Muller M.L.
        • et al.
        Abeta-amyloid deposition in patients with Parkinson disease at risk for development of dementia.
        Neurology. 2012; 79: 1161-1167
        • Shah N.
        • Frey K.A.
        • Muller M.L.
        • et al.
        Striatal and cortical beta-amyloidopathy and cognition in Parkinson's disease.
        Mov Disord. 2016; 31: 111-117
        • Akhtar R.S.
        • Xie S.X.
        • Chen Y.J.
        • et al.
        Regional brain amyloid-beta accumulation associates with domain-specific cognitive performance in Parkinson disease without dementia.
        PLoS ONE. 2017; 12 ([Electronic Resource]): e0177924
        • Fiorenzato E.
        • Biundo R.
        • Cecchin D.
        • et al.
        Brain amyloid contribution to cognitive dysfunction in early-stage Parkinson's disease: the PPMI dataset.
        J Alzheimers Dis. 2018; 66: 229-237
        • Kim J.
        • Ghadery C.
        • Cho S.S.
        • et al.
        Network patterns of beta-amyloid deposition in Parkinson's disease.
        Mol Neurobiol. 2019; 56: 7731-7740
        • Zhou Z.
        • Muller M.L.T.M.
        • Kanel P.
        • et al.
        Apathy rating scores and beta-amyloidopathy in patients with Parkinson disease at risk for cognitive decline.
        Neurology. 2020; 94: e376-e383
        • Kotagal V.
        • Spino C.
        • Bohnen N.I.
        • et al.
        Serotonin, beta-amyloid, and cognition in Parkinson disease.
        Ann Neurol. 2018; 83: 994-1002
        • Buée L.
        • Bussière T.
        • Buée-Scherrer V.
        • et al.
        Tau protein isoforms, phosphorylation and role in neurodegenerative disorders.
        Brain Res Brain Res Rev. 2000; 33: 95-130
        • Villemagne V.L.
        • Furumoto S.
        • Fodero-Tavoletti M.
        • et al.
        The challenges of tau imaging.
        Future Neurol. 2012; 7: 409-421
        • Villemagne V.L.
        • Fodero-Tavoletti M.T.
        • Masters C.L.
        • et al.
        Tau imaging: early progress and future directions.
        Lancet Neurol. 2015; 14: 114-124
        • Schonhaut D.R.
        • McMillan C.T.
        • Spina S.
        • et al.
        18 F-flortaucipir tau positron emission tomography distinguishes established progressive supranuclear palsy from controls and Parkinson disease: a multicenter study.
        Ann Neurol. 2017; 82: 622-634
        • Whitwell J.L.
        • Lowe V.J.
        • Tosakulwong N.
        • et al.
        [18 F]AV-1451 tau positron emission tomography in progressive supranuclear palsy.
        Mov Disord. 2017; 32: 124-133
        • Smith R.
        • Schain M.
        • Nilsson C.
        • et al.
        Increased basal ganglia binding of 18 F-AV-1451 in patients with progressive supranuclear palsy.
        Mov Disord. 2017; 32: 108-114
        • Smith R.
        • Scholl M.
        • Widner H.
        • et al.
        In vivo retention of 18F-AV-1451 in corticobasal syndrome.
        Neurology. 2017; 89: 845-853
        • Coakeley S.
        • Cho S.S.
        • Koshimori Y.
        • et al.
        Positron emission tomography imaging of tau pathology in progressive supranuclear palsy.
        J Cereb Blood Flow Metab. 2017; 37: 3150-3160
        • Passamonti L.
        • Vazquez Rodriguez P.
        • Hong Y.T.
        • et al.
        18F-AV-1451 positron emission tomography in Alzheimer's disease and progressive supranuclear palsy.
        Brain. 2017; 140: 781-791
        • Marquie M.
        • Normandin M.D.
        • Meltzer A.C.
        • et al.
        Pathological correlations of [F-18]-AV-1451 imaging in non-alzheimer tauopathies.
        Ann Neurol. 2017; 81: 117-128
        • Marquie M.
        • Normandin M.D.
        • Vanderburg C.R.
        • et al.
        Validating novel tau positron emission tomography tracer [F-18]-AV-1451 (T807) on postmortem brain tissue.
        Ann Neurol. 2015; 78: 787-800
        • Lowe V.J.
        • Curran G.
        • Fang P.
        • et al.
        An autoradiographic evaluation of AV-1451 Tau PET in dementia.
        Acta Neuropathol Commun. 2016; 4: 58
        • Sander K.
        • Lashley T.
        • Gami P.
        • et al.
        Characterization of tau positron emission tomography tracer [18F]AV-1451 binding to postmortem tissue in Alzheimer's disease, primary tauopathies, and other dementias.
        Alzheimers Demen. 2016; 12: 1116-1124
        • Vermeiren C.
        • Motte P.
        • Viot D.
        • et al.
        The tau positron-emission tomography tracer AV-1451 binds with similar affinities to tau fibrils and monoamine oxidases.
        Mov Disord. 2018; 33: 273-281
        • Hansen A.K.
        • Knudsen K.
        • Lillethorup T.P.
        • et al.
        In vivo imaging of neuromelanin in Parkinson's disease using 18F-AV-1451 PET.
        Brain. 2016; 139: 2039-2049
        • Coakeley S.
        • Cho S.S.
        • Koshimori Y.
        • et al.
        [18F]AV-1451 binding to neuromelanin in the substantia nigra in PD and PSP.
        Brain Struct Funct. 2018; 223: 589-595
        • Maruyama M.
        • Shimada H.
        • Suhara T.
        • et al.
        Imaging of tau pathology in a tauopathy mouse model and in Alzheimer patients compared to normal controls.
        Neuron. 2013; 79: 1094-1108
        • Perez-Soriano A.
        • Arena J.E.
        • Dinelle K.
        • et al.
        PBB3 imaging in Parkinsonian disorders: evidence for binding to tau and other proteins.
        Mov Disord. 2017; 32: 1016-1024
        • Endo H.
        • Shimada H.
        • Sahara N.
        • et al.
        In vivo binding of a tau imaging probe, [11 C]PBB3, in patients with progressive supranuclear palsy.
        Mov Disord. 2019; 34: 744-754
        • Ono M.
        • Sahara N.
        • Kumata K.
        • et al.
        Distinct binding of PET ligands PBB3 and AV-1451 to tau fibril strains in neurodegenerative tauopathies.
        Brain. 2017; 140: 764-780
        • Koga S.
        • Ono M.
        • Sahara N.
        • et al.
        Fluorescence and autoradiographic evaluation of tau PET ligand PBB3 to alpha-synuclein pathology.
        Mov Disord. 2017; 32: 884-892
        • Hsieh C.J.
        • Ferrie J.J.
        • Xu K.
        • et al.
        Alpha synuclein fibrils contain multiple binding sites for small molecules.
        ACS Chem Neurosci. 2018; 9: 2521-2527
        • Verdurand M.
        • Levigoureux E.
        • Zeinyeh W.
        • et al.
        In silico, in vitro, and in vivo evaluation of new candidates for alpha-synuclein PET imaging.
        Mol Pharm. 2018; 15: 3153-3166
        • Josephson L.
        • Stratman N.
        • Liu Y.
        • et al.
        The binding of BF-227-like benzoxazoles to human α-synuclein and amyloid β peptide fibrils.
        Mol Imaging. 2018; 17 (1536012118796297)