Advertisement

Copper-64 Radiopharmaceuticals for Oncologic Imaging

      The positron emitting radionuclide 64Cu has a radioactive half-life of 12.7 hours. The decay characteristics of 64Cu allow for PET images that are comparable in quality to those obtained using 18F. Given the longer radioactive half-life of 64Cu compared with 18F and the versatility of copper chemistry, copper is an attractive alternative to the shorter-lived nuclides for PET imaging of peptides, antibodies, and small molecules that may require longer circulation times. This article discusses a number of copper radiopharmaceuticals, such as Cu-ATSM, that have been translated to the clinic and new developments in copper-based radiopharmaceuticals.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to PET Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Rudin M.
        • Weissleder R.
        Molecular imaging in drug discovery and development.
        Nat Rev Drug Discov. 2003; 2: 123-131
        • Quon A.
        • Napel S.
        • Beaulieu C.F.
        • et al.
        “Flying through” and “flying around” a PET/CT scan: Pilot study and development of 3D integrated 18F-FDG PET/CT for virtual bronchoscopy and colonoscopy.
        J Nucl Med. 2006; 47: 1081-1087
        • Anderson C.J.
        • Welch M.J.
        Radiometal-Labeled Agents (Non-Technetium) for Diagnostic Imaging.
        Chem Rev. 1999; 99: 2219-2234
        • Blower P.
        Towards molecular imaging and treatment of disease with radionuclides: the role of inorganic chemistry.
        Dalton Trans. 2006; : 1705-1711
        • Blower P.J.
        Small coordination complexes as radiopharmaceuticals for cancer targeting.
        Trans Met Chem. 1998; 23: 109-112
        • Blower P.J.
        • Lewis J.S.
        • Zweit J.
        Copper radionuclides and radiopharmaceuticals in nuclear medicine.
        Nucl Med Biol. 1996; 23: 957-980
        • Reichert D.E.
        • Lewis J.
        • Anderson C.J.
        Metal complexes as diagnostic tools.
        Coord Chem Rev. 1999; 184: 3-66
      1. Anderson CJ, Green MA, Fujibayashi Y. Chemistry of copper radionuclides and radiopharmaceutical products. In: Welch MJ, Redvanly CS, editors. Handbook of Radiopharmaceuticals. J. Wiley, Inc. 2003. p. 401–22.

        • Novak-Hofer I.
        • Schubiger P.A.
        Copper-67 as a therapeutic nuclide for radioimmunotherapy.
        Eur J Nucl Med Mol Imaging. 2002; 29: 821-830
        • Smith S.V.
        Molecular imaging with copper-64.
        J Inorg Biochem. 2004; 98: 1874-1901
        • Lewis J.S.
        • Herrero P.
        • Sharp T.L.
        • et al.
        Delineation of hypoxia in canine myocardium using PET and copper(II)-diacetyl-bis(N(4)-methylthiosemicarbazone).
        J Nucl Med. 2002; 43: 1557-1569
        • McCarthy D.W.
        • Shefer R.E.
        • Klinkowstein R.E.
        • et al.
        Efficient production of high specific activity 64Cu using a biomedical cyclotron.
        Nucl Med Biol. 1997; 24: 35-43
        • Szelecsényi F.
        • Blessing G.
        • Qaim S.M.
        Excitation functions of proton induced nuclear reaction on enriched 61Ni and 64Ni: possibility of production of no-carrier added 61Cu and 64Cu at a small cyclotron.
        Appl Radiat Isot. 1993; 44: 575-580
        • Obata A.
        • Kasamatsu S.
        • McCarthy D.W.
        • et al.
        Production of therapeutic quantities of 64Cu using a 12 MeV cyclotron.
        Nucl Med Biol. 2003; 30: 535-539
        • Hou X.
        • Jacobsen U.
        • Jorgensen J.C.
        Separation of no-carrier added 64Cu from a proton irradiated enriched nickel target.
        Appl Radiat Isot. 2002; 57: 773-777
        • Zweit J.
        • Smith A.M.
        • Downey S.
        • et al.
        Excitation functions for deuteron induced reactions in natural nickel: production of no-carrier added 64Cu from enriched 64Ni target for positron emission tomography.
        Appl Radiat Isot. 1991; 42: 193-197
        • McCarthy D.W.
        • Bass L.A.
        • Cutler P.D.
        • et al.
        High purity production and potential applications of copper-60 and copper-61.
        Nucl Med Biol. 1999; 26: 351-358
        • Szajek L.P.
        • Meyer W.
        • Plascjak P.
        • et al.
        Semi-remote production of [64Cu]CuCl2 and preparation of high specific activity [64Cu]Cu-ATSM for PET studies.
        Radiochim Acta. 2005; 93: 239-244
        • Zeisler S.K.
        • Pavan R.A.
        • Orzechowski J.
        • et al.
        Production of 64Cu on the Sherbrooke TR-PET cyclotron.
        J Radioanal Nucl Chem. 2003; 257: 175-177
        • Lewis J.S.
        • Welch M.J.
        • Tang L.
        Workshop on the Production, application and clinical translation of ‘non-standard’ PET nuclides: a meeting report.
        Q J Nucl Med Mol Imaging. 2008; 52: 101-106
        • Brown J.M.
        The hypoxic cell: a target for selective cancer therapy-Eighteenth Bruce F. Cain Memorial Award Lecture.
        Cancer Res. 1999; 59: 5863-5870
        • Tatum J.L.
        • Kelloff G.J.
        • Gillies R.J.
        • et al.
        Hypoxia: importance in tumor biology, noninvasive measurement by imaging, and value of its measurement in the management of cancer therapy.
        Int J Radiat Biol. 2006; 82: 699-757
        • Graeber T.G.
        • Osmanian C.
        • Jacks T.
        • et al.
        Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumors.
        Nature. 1996; 379: 88-91
        • Höckel M.
        • Schlenger K.
        • Aral B.
        • et al.
        Association between tumor hypoxia and malignant progression in advanced cancer of the uterine cervix.
        Cancer Res. 1996; 56: 4509-4515
        • Shweiki D.
        • Itin A.
        • Soffer D.
        • et al.
        Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis.
        Nature. 1992; 359: 843-845
        • Gray L.H.
        • Conger A.D.
        • Ebert M.
        • et al.
        The concentration of oxygen dissolved in tissues at the time of irradiation as a factor in radiotherapy.
        Br J Radiol. 1953; 26: 638-648
        • Gatenby R.A.
        • Smallbone K.
        • Maini P.K.
        • et al.
        Cellular adaptations to hypoxia and acidosis during somatic evolution of breast cancer.
        Br J Cancer. 2007; 97: 646-653
        • Carroll V.A.
        • Ashcroft M.
        Targeting the molecular basis for tumor hypoxia.
        Expert Rev Mol Med. 2005; 7: 1-16
        • Fujibayashi Y.
        • Taniuchi H.
        • Yonekura Y.
        • et al.
        Copper-62-ATSM: a new hypoxia imaging agent with high membrane permeability and low redox potential.
        J Nucl Med. 1997; 38: 1155-1160
        • Fujibayashi Y.
        • Cutler C.S.
        • Anderson C.J.
        • et al.
        Comparative studies of Cu-64-ATSM and C-11-Acetate in an acute myocardial infarction model: ex vivo imaging of hypoxia in rats.
        Nucl Med Biol. 1999; 26: 117
        • Dearling J.L.J.
        • Lewis J.S.
        • McCarthy D.W.
        • et al.
        Redox-active metal complexes for imaging hypoxic tissues: structure-activity relationships in copper(II) bis(thiosemicarbazone) complexes.
        Chem Commun. 1998; : 2531-2532
        • Dearling J.L.J.
        • Lewis J.S.
        • Mullen G.E.D.
        • et al.
        Copper bis(thiosemicarbazone) complexes as hypoxia imaging agents: structure-activity relationships.
        J Biol Inorg Chem. 2002; 7: 249-259
        • Lewis J.S.
        • Laforest R.
        • Buettner T.L.
        • et al.
        Copper-64-diacetyl-bis(N4-methylthiosemicarbazone): an agent for radiotherapy.
        Proc Natl Acad Sci U S A. 2001; 98: 1206-1211
        • Lewis J.S.
        • McCarthy D.W.
        • McCarthy T.J.
        • et al.
        Evaluation of 64Cu-ATSM in vitro and in vivo in a hypoxic tumor model.
        J Nucl Med. 1999; 40: 177-183
        • Lewis J.S.
        • Sharp T.L.
        • Laforest R.
        • et al.
        Tumor uptake of copper-diacetyl-bis(N4-methylthiosemicarbazone): effect of changes in tissue oxygenation.
        J Nucl Med. 2001; 42: 655-661
        • Maurer R.I.
        • Blower P.J.
        • Dilworth J.R.
        • et al.
        Studies on the Mechanism of Hypoxic Selectivity in Copper Bis(Thiosemicarbazone) Radiopharmaceuticals.
        J Med Chem. 2002; 45: 1420-1431
        • Vavere A.L.
        • Lewis J.S.
        Cu-ATSM: a radiopharmaceutical for the PET imaging of hypoxia.
        Dalton Trans. 2007; : 4893-4902
        • Wong T.Z.
        • Lacy J.L.
        • Petry N.A.
        • et al.
        PET of hypoxia and perfusion with 62Cu-ATSM and 62Cu-PTSM using a 62Zn/62Cu generator.
        AJR Am J Roentgenol. 2008; 190: 427-432
        • Wood K.A.
        • Wong W.L.
        • Saunders M.I.
        [64Cu]diacetyl-bis(N4-methyl-thiosemicarbazone) - a radiotracer for tumor hypoxia.
        Nucl Med Biol. 2008; 35: 393-400
        • Holland J.P.
        • Green J.C.
        • Dilworth J.R.
        Probing the mechanism of hypoxia selectivity of copper bis(thiosemicarbazonato) complexes: DFT calculation of redox potentials and absolute acidities in solution.
        Dalton Trans. 2006; : 783-794
        • Holland J.P.
        • Barnard P.J.
        • Collison D.
        • et al.
        Spectroelectrochemical and computational studies on the mechanism of hypoxia selectivity of copper radiopharmaceuticals.
        Chemistry A Euro J. 2008; 14: 5890-5907
        • Burgman P.
        • O'Donoghue J.A.
        • Lewis J.S.
        • et al.
        Cell line-dependent differences in uptake and retention of the hypoxia-selective nuclear imaging agent Cu-ATSM.
        Nucl Med Biol. 2005; 32: 623-630
        • O'Donoghue J.A.
        • Zanzonico P.
        • Pugachev A.
        • et al.
        Assessment of regional tumor hypoxia using 18F-fluoromisonidazole and 64Cu(II)-diacetyl-bis(N4-methylthiosemicarbazone) positron emission tomography: Comparative study featuring microPET imaging, P2 probe measurement, autoradiography, and fluorescent microscopy in the R3327-AT and FaDu rat tumor models.
        Int J Radiat Oncol Biol Phys. 2005; 61: 1493-1502
        • Dence C.S.
        • Ponde D.E.
        • Welch M.J.
        • et al.
        Autoradiographic and small-animal PET comparisons between 18F-FMISO, 18F-FDG, 18F-FLT and the hypoxic selective 64Cu-ATSM in a rodent model of cancer.
        Nucl Med Biol. 2008; 35: 713-720
        • Yuan H.
        • Schroeder T.
        • Bowsher J.E.
        • et al.
        Intertumoral differences in hypoxia selectivity of the PET imaging agent 64Cu(II)-diacetyl-Bis(N4-methylthiosemicarbazone).
        J Nucl Med. 2006; 47: 989-998
        • Tanaka T.
        • Furukawa T.
        • Fujieda S.
        • et al.
        Double-tracer autoradiography with Cu-ATSM/FDG and immunohistochemical interpretation in four different mouse implanted tumor models.
        Nucl Med Biol. 2006; 33: 743-750
        • Takahashi N.
        • Fujibayashi Y.
        • Yonekura Y.
        • et al.
        Evaluation of 62Cu labeled diacetyl-bis(N4-methylthiosemicarbazone) as a hypoxic tissue tracer in patients with lung cancer.
        Ann Nucl Med. 2000; 14: 323-328
        • Takahashi N.
        • Fujibayashi Y.
        • Yonekura Y.
        • et al.
        Copper-62 ATSM as a hypoxic tissue tracer in myocardial ischemia.
        Ann Nucl Med. 2001; 15: 293-296
        • Dehdashti F.
        • Mintun M.A.
        • Lewis J.S.
        • et al.
        In vivo assessment of tumor hypoxia in lung cancer with 60Cu-ATSM.
        Eur J Nucl Med Mol Imaging. 2003; 30: 844-850
        • Dehdashti F.
        • Grigsby P.W.
        • Mintun M.A.
        • et al.
        Assessing tumor hypoxia in cervical cancer by positron emission tomography with 60Cu-ATSM: relationship to therapeutic response-a preliminary report.
        Int J Radiat Oncol Biol Phys. 2003; 55: 1233-1238
        • Dietz D.W.
        • Dehdashti F.
        • Grigsby P.W.
        • et al.
        Tumor Hypoxia Detected by Positron Emission Tomography with 60Cu-ATSM as a predictor of response and survival in patients undergoing Neoadjuvant Chemoradiotherapy for Rectal Carcinoma: a pilot study.
        Dis Colon Rectum. 2008; 51: 1641-1648
        • Grigsby P.W.
        • Malyapa R.S.
        • Higashikubo R.
        • et al.
        Comparison of molecular markers of hypoxia and imaging with 60Cu-ATSM in cancer of the uterine cervix.
        Mol Imaging Biol. 2007; 9: 278-283
        • Dehdashti F.
        • Grigsby P.W.
        • Lewis J.S.
        • et al.
        Assessing tumor hypoxia in cervical cancer by PET with 60Cu-labeled diacetyl-bis (N4-methylthiosemicarbazone).
        J Nucl Med. 2008; 49: 201-205
        • Lewis J.S.
        • Laforest R.
        • Dehdashti F.
        • et al.
        An imaging comparison of 64Cu-ATSM and 60Cu-ATSM in cancer of the uterine cervix.
        J Nucl Med. 2008; 49: 1177-1182
        • Laforest R.
        • Dehdashti F.
        • Lewis J.S.
        • et al.
        Dosimetry of 60/61/62/64Cu-ATSM: a hypoxia imaging agent for PET.
        Eur J Nucl Med Mol Imaging. 2005; 32: 764-770
        • Obata A.
        • Kasamatsu S.
        • Lewis J.S.
        • et al.
        Basic characterization of 64Cu-ATSM as a radiotherapy agent.
        Nucl Med Biol. 2005; 32: 21-28
        • Hoyer D.
        • Lubbert H.
        • Bruns C.
        Molecular pharmacology of Somatostatin receptors.
        Naunyn Schmiedebergs Arch Pharmacol. 1994; 350: 441-453
        • Reubi J.C.
        In-vitro identification of vasoactive-intestinal-peptide receptors in human tumors - implications for tumor imaging.
        J Nucl Med. 1995; 36: 1846-1853
        • Reubi J.C.
        • Kvols L.
        • Krenning E.
        • et al.
        Distribution of Somatostatin receptors in normal and tumor-tissue.
        Metab Clin Exp. 1990; 39: 78-81
        • Reubi J.C.
        • Schaer J.C.
        • Laissue J.A.
        • et al.
        Somatostatin receptors and their subtypes in human tumors and in peritumoral vessels.
        Metab Clin Exp. 1996; 45: 39-41
        • Reubi J.C.
        • Waser B.
        • Schaer J.C.
        • et al.
        Somatostatin receptor sst1-sst5 expression in normal and neoplastic human tissues using receptor autoradiography with subtype-selective ligands.
        Eur J Nucl Med. 2001; 28: 836-846
        • Hofland L.J.
        • Lamberts S.W.J.
        • van Hagen P.M.
        • et al.
        Crucial role for somatostatin receptor subtype 2 in determining the uptake of [In-111-DTPA-D-Phe(1)] octreotide in somatostatin receptor-positive organs.
        J Nucl Med. 2003; 44: 1315-1321
        • Papotti M.
        • Bongiovanni M.
        • Volante M.
        • et al.
        Expression of somatostatin receptor types 1-5 in 81 cases of gastrointestinal and pancreatic endocrine tumors - a correlative immunohistochemical and reverse-transcriptase polymerase chain reaction analysis.
        Virchows Arch. 2002; 440: 461-475
        • Harrison Louis B.
        • Chadha M.
        • Hill Richard J.
        • et al.
        Impact of tumor hypoxia and anemia on radiation therapy outcomes.
        Oncologist. 2002; 7: 492-508
        • Heppeler A.
        • Froidevaux S.
        • Eberle A.N.
        • et al.
        Receptor targeting for tumor localisation and therapy with radiopeptides.
        Curr Med Chem. 2000; 7: 971-994
        • Li W.P.
        • Meyer L.A.
        • Anderson C.J.
        Radiopharmaceuticals for positron emission tomography imaging of somatostatin receptor positive tumors.
        Contrast Agents Iii: Radiopharmaceuticals. Diagnostics to Therapeutics. SpringerBerlin/Heidelberg;. 2005; (Vol. 252. p. 179–92)
        • Weiner R.E.
        • Thakur M.L.
        Radiolabeled peptides in diagnosis and therapy.
        Semin Nucl Med. 2001; 31: 296-311
        • Weiner R.E.
        • Thakur M.L.
        Radiolabeled peptides in the diagnosis and therapy of oncological diseases.
        Appl Radiat Isot. 2002; 57: 749-763
        • Weiner R.E.
        • Thakur M.L.
        Radiolabeled peptides in oncology - role in diagnosis and treatment.
        BioDrugs. 2005; 19: 145-163
        • Patel Y.C.
        • Wheatley T.
        In vivo and in vitro plasma disappearance and metabolism of somatostatin-28 and somatostatin-14 in the rat.
        Endocrinology. 1983; 112: 220-225
        • Bauer W.
        • Briner U.
        • Doepfner W.
        • et al.
        SMS 201-995: a very potent and selective octapeptide analogue of somatostatin with prolonged action.
        Life Sci. 1982; 31: 1133-1140
        • Bevan J.S.
        Clinical review: The antitumoral effects of somatostatin analog therapy in acromegaly.
        J Clin Endocrinol Metab. 2005; 90: 1856-1863
        • de Herder W.W.
        • Hofland L.J.
        • van der Lely A.J.
        • et al.
        Somatostatin receptors in gastroenteropancreatic neuroendocrine tumours.
        Endocr Relat Cancer. 2003; 10: 451-458
        • Lamberts S.W.J.
        A Guide to the Clinical Use of the Somatostatin Analog Sms 201-995 (Sandostatin).
        Acta Endocrinol. 1987; 116: 54-66
        • Eriksson B.
        • Janson E.T.
        • Bax N.D.S.
        • et al.
        The use of new somatostatin analogues, lanreotide and octastatin, in neuroendocrine gastro-intestinal tumours.
        Digestion. 1996; 57: 77-80
        • Murray R.D.
        • Melmed S.
        A critical analysis of clinically available somatostatin analog formulations for therapy of acromegaly.
        J Clin Endocrinol Metab. 2008; 93: 2957-2968
        • Ginj M.
        • Zhang H.W.
        • Eisenwiener K.P.
        • et al.
        New pansomatostatin ligands and their chelated versions: affinity profile, agonist activity, internalization, and tumor targeting.
        Clin Cancer Res. 2008; 14: 2019-2027
        • Lewis I.
        • Bauer W.
        • Albert R.
        • et al.
        A novel somatostatin mimic with broad somatotropin release inhibitory factor receptor binding and superior therapeutic potential.
        J Med Chem. 2003; 46: 2334-2344
        • Anderson C.J.
        • Pajeau T.S.
        • Edwards W.B.
        • et al.
        In-vitro and in-vivo evaluation of copper-64-octreotide conjugates.
        J Nucl Med. 1995; 36: 2315-2325
        • Parry J.J.
        • Eiblmaier M.
        • Andrews R.
        • et al.
        Characterization of somatostatin receptor subtype 2 expression in stably transfected A-427 human cancer cells.
        Mol Imaging. 2007; 6: 56-67
        • Anderson C.J.
        • Dehdashti F.
        • Cutler P.D.
        • et al.
        Cu-64-TETA-Octreotide as a PET imaging agent for patients with neuroendocrine tumors.
        J Nucl Med. 2001; 42: 213-221
        • Gulec S.A.
        • Baum R.
        Radio-guided surgery in neuroendocrine tumors.
        J Surg Oncol. 2007; 96: 309-315
        • Anderson C.J.
        • Jones L.A.
        • Bass L.A.
        • et al.
        Radiotherapy, toxicity and dosimetry of copper-64-TETA-octreotide in tumor-bearing rats.
        J Nucl Med. 1998; 39: 1944-1951
        • Lewis J.S.
        • Lewis M.R.
        • Cutler P.D.
        • et al.
        Radiotherapy and dosimetry of 64Cu-TETA-Tyr3-octreotate in a somatostatin receptor-positive, tumor-bearing rat model.
        Clin Cancer Res. 1999; 5: 3608-3616
        • Lewis J.S.
        • Lewis M.R.
        • Srinivasan A.
        • et al.
        Changes in target tissue uptake over a multiple dose radiotherapy regimen with copper-64-TETA-Y3-octreotate.
        J Nucl Med. 1999; 40 ([abstract]): 224
        • Lewis J.S.
        • Lewis M.R.
        • Srinivasan A.
        • et al.
        Comparison of four 64Cu-labeled Somatostatin analogs in vitro and in a tumor-bearing rat model: evaluation of new derivatives for positron emission tomography imaging and targeted radiotherapy.
        J Med Chem. 1999; 42: 1341-1347
        • Bass L.A.
        • Wang M.
        • Welch M.J.
        • et al.
        In vivo transchelation of copper-64 from TETA-octreotide to superoxide dismutase in rat liver.
        Bioconjug Chem. 2000; 11: 527-532
        • Wang M.
        • Caruano A.L.
        • Lewis M.R.
        • et al.
        Subcellular localization of radiolabeled somatostatin analogues: Implications for targeted radiotherapy of cancer.
        Cancer Res. 2003; 63: 6864-6869
        • Sun X.
        • Wuest M.
        • Weisman G.R.
        • et al.
        Radiolabeling and in vivo behavior of copper-64-labeled cross-bridged cyclam ligands.
        J Med Chem. 2002; 45: 469-477
        • Boswell C.A.
        • Sun X.K.
        • Niu W.J.
        • et al.
        Comparative in vivo stability of copper-64-labeled cross-bridged and conventional tetraazamacrocyclic complexes.
        J Med Chem. 2004; 47: 1465-1474
        • Eiblmaier M.
        • Andrews R.
        • Laforest R.
        • et al.
        Nuclear uptake and dosimetry of 64Cu-labeled chelator-somatostatin conjugates in an SSTr2-transfected human tumor cell line.
        J Nucl Med. 2007; 48: 1390-1396
        • Sprague J.E.
        • Peng Y.
        • Sun X.
        • et al.
        Preparation and biological evaluation of copper-64-labeled Tyr3-octreotate using a cross-bridged macrocyclic chelator.
        Clin Cancer Res. 2004; 10: 8674-8682
        • Hynes R.O.
        Integrins - Versatility, Modulation, and Signaling in Cell-Adhesion.
        Cell. 1992; 69: 11-25
        • Luscinskas F.W.
        • Lawler J.
        Integrins as Dynamic Regulators of Vascular Function.
        FASEB J. 1994; 8: 929-938
        • Ruoslahti E.
        RGD and other recognition sequences for integrins.
        Annu Rev Cell Dev Biol. 1996; 12: 697-715
        • Hood J.D.
        • Cheresh D.A.
        Role of integrins in cell invasion and migration.
        Nat Rev Cancer. 2002; 2: 91-100
        • Beer A.J.
        • Schwaiger M.
        Imaging of integrin avß3 expression.
        Cancer Metastasis Rev. 2008; 27: 631-644
        • Albelda S.M.
        • Mette S.A.
        • Elder D.E.
        • et al.
        Integrin distribution in malignant-melanoma - association of the Beta-3-subunit with tumor progression.
        Cancer Res. 1990; 50: 6757-6764
        • Bello L.
        • Francolini M.
        • Marthyn P.
        • et al.
        alpha v beta 3 and alpha v beta 5 integrin expression in glioma periphery.
        Neurosurgery. 2001; 49: 380-389
        • Brooks P.C.
        • Stromblad S.
        • Klemke R.
        • et al.
        Anti-integrin alpha-v-beta-3 blocks human breast-cancer growth and Angiogenesis in human skin.
        J Clin Invest. 1995; 96: 1815-1822
        • Jin H.
        • Varner J.
        Integrins: roles in cancer development and as treatment targets.
        Br J Cancer. 2004; 90: 561-565
        • Cai W.B.
        • Chen K.
        • Mohamedali K.A.
        • et al.
        PET of vascular endothelial growth factor receptor expression.
        J Nucl Med. 2006; 47: 2048-2056
        • Horton M.A.
        The alpha v beta 3 integrin “vitronectin receptor”.
        Int J Biochem Cell Biol. 1997; 29: 721-725
        • Ruoslahti E.
        The RGD story: a personal account.
        Matrix Biol. 2003; 22: 459-465
        • Xiong J.P.
        • Stehle T.
        • Diefenbach B.
        • et al.
        Crystal structure of the extracellular segment of integrin alpha V beta 3.
        Science. 2001; 294: 339-345
        • Xiong J.P.
        • Stehle T.
        • Zhang R.G.
        • et al.
        Crystal structure of the extracellular segment of integrin alpha V beta 3 in complex with an Arg-Gly-Asp ligand.
        Science. 2002; 296: 151-155
        • De Jong M.
        • VanHagen P.M.
        • Breeman W.A.
        • et al.
        Evaluation of radiolabeled cyclic DTPARGD analog for tumor imaging and radionuclide therapy.
        J Nucl Med. 2000; 41 ([abstract]): 232
        • Janssen M.
        • Buijs W.
        • Boerman O.
        • et al.
        Y-86 and In-111 labeled alpha(V beta 3) binding peptides: a comparative dosimetric study in dogs.
        J Nucl Med. 2001; 42: 241
        • Janssen M.
        • Oyen W.J.G.
        • Massuger L.F.A.G.
        • et al.
        Comparison of a monomeric and dimeric radiolabeled RGD-peptide for tumor targeting.
        Cancer Biother Radiopharm. 2002; 17: 641-646
        • Janssen M.L.
        • Oyen W.J.
        • Dijkgraaf I.
        • et al.
        Tumor targeting with radiolabeled alpha(v)beta(3) integrin binding peptides in a nude mouse model.
        Cancer Res. 2002; 62: 6146-6151
        • Liu S.
        • Cheung E.
        • Ziegler M.C.
        • et al.
        Y-90 and Lu-177 labeling of a DOTA-conjugated vitronectin receptor antagonist useful for tumor therapy.
        Bioconjug Chem. 2001; 12: 559-568
        • Liu S.
        • Edwards D.S.
        • Ziegler M.C.
        • et al.
        Tc-99m-Labeling of a hydrazinonicotinamide-conjugated vitronectin receptor antagonist useful for imaging tumors.
        Bioconjug Chem. 2001; 12: 624-629
        • Su Z.
        • Liu G.Z.
        • Gupta S.
        • et al.
        In vitro and in vivo evaluation of a technetium-99m-labeled cyclic RGD peptide as a specific marker of alpha(V)beta(3) integrin for tumor imaging.
        Bioconjug Chem. 2002; 13: 561-570
        • van Hagen P.M.
        • Breeman W.A.P.
        • Bernard H.F.
        • et al.
        Evaluation of a radiolabelled cyclic DTPA-RGD analogue for tumour imaging and radionuclide therapy.
        Int J Cancer. 2000; 90: 186-198
        • van Hagen P.M.
        • De Jong M.
        • Breeman W.A.
        • et al.
        In-111-labeled RGD analog for tumor imaging.
        J Nucl Med. 2000; 41 ([abstract]): 286
        • Chen X.Y.
        • Park R.
        • Tohme M.
        • et al.
        MicroPET and autoradiographic imaging of breast cancer alpha(v)-integrin expression using F-18- and Cu-64-labeled RGD peptide.
        Bioconjug Chem. 2004; 15: 41-49
        • Chen X.Y.
        • Liu S.
        • Hou Y.P.
        • et al.
        MicroPET imaging of breast cancer alpha(v)-integrin expression with Cu-64-labeled dimeric RGD peptides.
        Mol Imaging Biol. 2004; 6: 350-359
        • Chen X.Y.
        • Hou Y.P.
        • Tohme M.
        • et al.
        Pegylated Arg-Gly-Asp peptide: Cu-64 labeling and PET imaging of brain tumor alpha(v)beta(3)-integrin expression.
        J Nucl Med. 2004; 45: 1776-1783
        • Chen X.Y.
        • Sievers E.
        • Hou Y.P.
        • et al.
        Integrin alpha(V)beta(3)-targeted imaging of lung cancer.
        Neoplasia. 2005; 7: 271-279
        • Wu Y.
        • Zhang X.Z.
        • Xiong Z.M.
        • et al.
        microPET imaging of glioma integrin alpha(v)beta(3) expression using Cu-64-labeled tetrameric RGD peptide.
        J Nucl Med. 2005; 46: 1707-1718
        • Li Z.B.
        • Cai W.B.
        • Cao Q.Z.
        • et al.
        64Cu-Labeled tetrameric and octameric RGD peptides for small-animal PET of tumor alpha(v)beta(3) integrin expression.
        J Nucl Med. 2007; 48: 1162-1171
        • Wang H.
        • Chen K.
        • Cai W.B.
        • et al.
        Integrin-targeted imaging and therapy with RGD4C-TNF fusion protein.
        Mol Cancer Ther. 2008; 7: 1044-1053
        • Sprague J.E.
        • Kitaura H.
        • Zou W.
        • et al.
        Noninvasive imaging of osteoclasts in parathyroid hormone-induced osteolysis using a 64Cu-labeled RGD peptide.
        J Nucl Med. 2007; 48: 311-318
        • Nakamura I.
        • Duong L.T.
        • Rodan S.B.
        • et al.
        Involvement of alpha(v)beta(3) integrins in osteoclast function.
        J Bone Miner Metab. 2007; 25: 337-344
        • McQuade P.
        • Knight L.C.
        • Welch M.J.
        Evaluation of Cu-64- and I-125-radiolabeled bitistatin as potential agents for targeting alpha(v)beta(3) integrins in tumor angiogenesis.
        Bioconjug Chem. 2004; 15: 988-996
        • Cochran J.R.
        • Kimura R.
        • Levin A.M.
        • et al.
        Engineered integrin binding peptides.
        PCT Int Appl WO. 2008; ([patent application]) (2008045252. 2008)
        • Anderson C.J.
        • Connett J.M.
        • Schwarz S.W.
        • et al.
        Copper-64-labeled antibodies for PET imaging.
        J Nucl Med. 1992; 33: 1685-1691
        • Philpott G.W.
        • Schwarz S.W.
        • Anderson C.J.
        • et al.
        RadioimmunoPET: detection of colorectal carcinoma with positron-emitting copper-64-labeled monoclonal antibody.
        J Nucl Med. 1995; 36: 1818-1824
        • Philpott G.W.
        • Siegel B.A.
        • Schwarz S.W.
        • et al.
        Immunoscintigraphy with a new indium-111-labeled monoclonal antibody (MAb 1A3) in patients with colorectal cancer.
        Dis Colon Rectum. 1994; 37: 782-792
        • Connett J.M.
        • Anderson C.J.
        • Guo L.W.
        • et al.
        Radioimmunotherapy with a 64Cu-labeled monoclonal antibody: a comparison with 67Cu.
        Proc Natl Acad Sci U S A. 1996; 93: 6814-6818
        • Connett J.M.
        • Buettner T.L.
        • Anderson C.J.
        Maximum tolerated dose and large tumor radioimmunotherapy studies of 64Cu-labeled monoclonal antibody 1A3 in a colon cancer model.
        Clin Cancer Res. 1999; 5: 3207s-3212s
        • Laskin J.J.
        • Sandler A.B.
        Epidermal growth factor receptors: a promising target in solid tumors.
        Cancer Treat Rev. 2004; 30: 1-17
        • Fan Z.
        • Masui H.
        • Altas I.
        • et al.
        Blockage of epidermal growth factor receptor function by bivalent and monovalent fragments of C225 anti-epidermal growth factor receptor monoclonal antibodies.
        Cancer Res. 1993; 53: 4322-4328
        • Mendelsohn J.
        Epidermal growth factor receptor inhibition by a monocolonal antobody as anticancer therapy.
        Clin Cancer Res. 1997; 3: 2703-2707
        • Cai W.
        • Chen K.
        • He L.
        • et al.
        Quantitative PET of EGFR expression in xenograft-bearing mice using (64)Cu-labeled cetuximab, a chimeric anti-EGFR monoclonal antibody.
        Eur J Nucl Med Mol Imaging. 2007; 34: 850-858
        • Li W.P.
        • Meyer L.A.
        • Capretto D.A.
        • et al.
        Receptor-binding, biodistribution, and metabolism studies of 64Cu-DOTA-Cetuximab, a PET-imaging agent for epidermal growth-factor receptor-positive tumors.
        Cancer Biother Radiopharm. 2008; 23: 158-171
        • Eiblmaier M.
        • Meyer L.A.
        • Watson M.A.
        • et al.
        Correlating EGFR expression with receptor-binding properties and internalization of 64Cu-DOTA-cetuximab in 5 cervical cancer cell lines.
        J Nucl Med. 2008; 49: 1472-1479
        • Lewis J.S.
        • Connett J.M.
        • Garbow J.R.
        • et al.
        Copper-64-pyruvaldehyde-bis(N4-methylthiosemicarbazone) for the prevention of tumor growth at wound sites following laparoscopic surgery: monitoring therapy response with microPET and magnetic resonance imaging.
        Cancer Res. 2002; 62: 445-449
        • Fujibayashi Y.
        • Wada K.
        • Taniuchi H.
        • et al.
        Mitochondria-selective reduction of 62Cu-pyruvaldehyde bis(N4-methylthiosemicarbazone) (62Cu-PTSM) in the murine brain; a novel radiopharmaceutical for brain positron emission tomography (PET) imaging.
        Biol Pharm Bull. 1993; 16: 146-149
        • Donnelly P.S.
        • Caragounis A.
        • Du T.
        • et al.
        Selective intracellular release of Copper and Zinc Ions from Bis(thiosemicarbazonato) complexes reduces levels of Alzheimer disease Amyloid-beta peptide.
        J Biol Chem. 2008; 283: 4568-4577
        • Donnelly P.S.
        • Wedd A.G.
        Alzheimer's disease and the chemistry of copper.
        Aust J Chem. 2007; 74: 18-20
        • Donnelly P.S.
        • Xiao Z.
        • Wedd A.G.
        Copper and Alzheimer's disease.
        Curr Opin Chem Biol. 2007; 11: 128-133
        • Holland J.P.
        • Aigbirhio F.I.
        • Betts H.M.
        • et al.
        Functionalized Bis(thiosemicarbazonato) Complexes of Zinc and Copper: synthetic platforms toward site-specific radiopharmaceuticals.
        Inorg Chem. 2007; 46: 465-485
        • Bonnitcha P.D.
        • Vavere A.L.
        • Lewis J.S.
        • et al.
        In vitro and in vivo evaluation of bifunctional bisthiosemicarbazone 64Cu-complexes for the positron emission tomography imaging of hypoxia.
        J Med Chem. 2008; 51: 2985-2991
        • Wei L.
        • Easmon J.
        • Nagi R.K.
        • et al.
        64Cu-azabicyclo[3.2.2]nonane thiosemicarbazone complexes: radiopharmaceuticals for PET of topoisomerase II expression in tumors.
        J Nucl Med. 2006; 47: 2034-2041
        • Banerjee H.N.
        • Verma M.
        Use of nanotechnology for the development of novel cancer biomarkers.
        Expert Rev Mol Diagn. 2006; 6: 679-683
        • Banerjee H.N.
        • Verma M.
        Application of nanotechnology in cancer.
        Technol Cancer Res Treat. 2008; 7: 149-154
        • Jain K.K.
        Recent advances in nanooncology.
        Tech Cancer Res Treat. 2008; 7: 1-13
        • Lanza G.M.
        • Winter P.M.
        • Caruthers S.D.
        • et al.
        Magnetic resonance molecular imaging with nanoparticles.
        J Nucl Cardiol. 2004; 11: 733-743
        • Neumaier C.E.
        • Baio G.
        • Ferrini S.
        • et al.
        MR and iron magnetic nanoparticles. Imaging opportunities in preclinical and translational research.
        Tumori. 2008; 94: 226-233
        • Sosnovik D.E.
        • Nahrendorf M.
        • Weissleder R.
        Magnetic nanoparticles for MR imaging: agents, techniques and cardiovascular applications.
        Not Found In Database. 2008; 103: 122-130
        • Sun C.
        • Fang C.
        • Stephen Z.
        • et al.
        Tumor-targeted drug delivery and MRI contrast enhancement by chlorotoxin-conjugated iron oxide nanoparticles.
        Nanomed. 2008; 3: 495-505
        • Sun C.
        • Lee J.S.H.
        • Zhang M.Q.
        Magnetic nanoparticles in MR imaging and drug delivery.
        Adv Drug Deliv Rev. 2008; 60: 1252-1265
        • Waters E.A.
        • Wickline S.A.
        Contrast agents for MRI.
        Basic Res Cardiol. 2008; 103: 114-121
        • Absil E.
        • Tessier G.
        • Fournier D.
        • et al.
        Full field imaging and spectroscopy of individual gold nanoparticles.
        Eur Phys J Appl Phys. 2008; 43: 155-158
        • Hirsch L.R.
        • Gobin A.M.
        • Lowery A.R.
        • et al.
        Metal nanoshells.
        Ann Biomed Eng. 2006; 34: 15-22
        • Kho K.W.
        • Kah J.C.Y.
        • Lee C.G.L.
        • et al.
        Applications of gold nanoparticles in the early detection of cancer.
        J Mech Med Biol. 2007; 7: 19-35
        • Kogan M.J.
        • Olmedo I.
        • Hosta L.
        • et al.
        Peptides and metallic nanoparticles for biomedical applications.
        Nanomedicine. 2007; 2: 287-306
        • Liong M.
        • Lu J.
        • Kovochich M.
        • et al.
        Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery.
        ACS Nano. 2008; 2: 889-896
        • Loo C.
        • Lin A.
        • Hirsch L.
        • et al.
        Nanoshell-enabled photonics-based imaging and therapy of cancer.
        Tech Cancer Res Treat. 2004; 3: 33-40
        • Mulder W.J.M.
        • Strijkers G.J.
        • Habets J.W.
        • et al.
        MR molecular imaging and fluorescence microscopy for identification of activated tumor endothelium using a bimodal lipidic nanoparticle.
        FASEB J. 2005; 19: 2008-2010
        • Saito R.
        • Krauze M.T.
        • Bringas J.R.
        • et al.
        Gadolinium-loaded liposomes allow for real-time magnetic resonance imaging of convection-enhanced delivery in the primate brain.
        Exp Neurol. 2005; 196: 381-389
        • Al-Jamal W.T.
        • Kostarelos K.
        Liposome-nanoparticle hybrids for multimodal diagnostic and therapeutic applications.
        Nanomed. 2007; 2: 85-98
        • Caruthers S.D.
        • Wickline S.A.
        • Lanza G.M.
        Nanotechnological applications in medicine.
        Curr Opin Biotechnol. 2007; 18: 26-30
        • Marsh J.N.
        • Partlow K.C.
        • Abendschein D.R.
        • et al.
        Molecular imaging with targeted perfluorocarbon nanoparticles: Quantification of the concentration dependence of contrast enhancement for binding to sparse cellular epitopes.
        Ultrasound Med Biol. 2007; 33: 950-958
        • Winter P.M.
        • Cai K.
        • Caruthers S.D.
        • et al.
        Emerging nanomedicine opportunities with perfluorocarbon nanoparticles.
        Expert Rev Med Devices. 2007; 4: 137-145
        • Bielinska A.
        • Eichman J.D.
        • Lee I.
        • et al.
        Imaging {Au-0-PAMAM} gold-dendrimer nanocomposites in cells.
        J Nanoparticle Res. 2002; 4: 395-403
        • Gillies E.R.
        • Dy E.
        • Frechet J.M.J.
        • et al.
        Biological evaluation of polyester dendrimer: poly(ethylene oxide) “Bow-Tie” hybrids with tunable molecular weight and architecture.
        Mol Pharmacol. 2005; 2: 129-138
        • Goodson T.
        • Varnavski O.
        • Wang Y.
        Optical properties and applications of dendrimer-metal nanocomposites.
        Int Rev Phys Chem. 2004; 23: 109-150
        • Khan M.K.
        • Nigavekar S.S.
        • Minc L.D.
        • et al.
        In vivo biodistribution of dendrimers and dendrimer nanocomposites - Implications for cancer imaging and therapy.
        Tech Cancer Res Treat. 2005; 4: 603-613
        • Kobayashi H.
        • Kawamoto S.
        • Jo S.K.
        • et al.
        Macromolecular MRI contrast agents with small dendrimers: Pharmacokinetic differences between sizes and cores.
        Bioconjug Chem. 2003; 14: 388-394
        • Kobayashi H.
        • Kawamoto S.
        • Konishi J.
        • et al.
        Macromolecular MRI contrast agents with small dendrimer cores for functional kidney imaging.
        Radiology. 2002; 225: 237
        • Choi J.H.
        • Nguyen F.T.
        • Barone P.W.
        • et al.
        Multimodal biomedical imaging with asymmetric single-walled carbon nanotube/iron oxide nanoparticle complexes.
        Nano Lett. 2007; 7: 861-867
        • Keren S.
        • Zavaleta C.
        • Cheng Z.
        • et al.
        Noninvasive molecular imaging of small living subjects using Raman spectroscopy.
        Proc Natl Acad Sci U S A. 2008; 105: 5844-5849
        • Yu X.
        • Munge B.
        • Patel V.
        • et al.
        Carbon nanotube amplification strategies for highly sensitive immunodetection of cancer biomarkers.
        J Am Chem Soc. 2006; 128: 11199-11205
        • Shokeen M.
        • Fettig N.M.
        • Rossin R.
        Synthesis, in vitro and in vivo evaluation of radiolabeled nanoparticles.
        Q J Nucl Med Mol Imaging. 2008; 52: 267-277
        • Cai W.
        • Chen K.
        • Li Z.B.
        • et al.
        Dual-function probe for PET and near-infrared fluorescence imaging of tumor vasculature.
        J Nucl Med. 2007; 48: 1862-1870
        • Lee H.Y.
        • Li Z.
        • Chen K.
        • et al.
        PET/MRI dual-modality tumor imaging using arginine-glycine-aspartic (RGD) - Conjugated radiolabeled iron oxide nanoparticles.
        J Nucl Med. 2008; 49: 1371-1379
        • Pressly E.D.
        • Rossin R.
        • Hagooly A.
        • et al.
        Structural effects on the biodistribution and positron emission tomography (PET) imaging of well-defined Cu-64-labeled nanoparticles comprised of amphiphilic block graft copolymers.
        Biomacromolecules. 2007; 8: 3126-3134
        • Fukukawa K.I.
        • Rossin R.
        • Hagooly A.
        • et al.
        Synthesis and characterization of core-shell star copolymers for in vivo PET imaging applications.
        Biomacromolecules. 2008; 9: 1329-1339
        • Rossin R.
        • Muro S.
        • Welch M.J.
        • et al.
        In vivo imaging of Cu-64-labeled polymer nanoparticles targeted to the lung endothelium.
        J Nucl Med. 2008; 49: 103-111
        • Sun X.K.
        • Rossin R.
        • Turner J.L.
        • et al.
        An assessment of the effects of shell cross-linked nanoparticle size, core composition, and surface PEGylation on in vivo biodistribution.
        Biomacromolecules. 2005; 6: 2541-2554
        • Sun G.
        • Hagooly A.
        • Xu J.
        • et al.
        Facile, efficient approach to accomplish tunable chemistries and variable biodistributions for shell cross-linked nanoparticles.
        Biomacromolecules. 2008; 9: 1997-2006
        • Xu J.Q.
        • Sun G.R.
        • Rossin R.
        • et al.
        Labeling of polymer nanostructures for medical imaging: Importance of cross-linking extent, spacer length, and charge density.
        Macromolecules. 2007; 40: 2971-2973
        • Bartlett D.W.
        • Su H.
        • Hildebrandt I.J.
        • et al.
        Impact of tumor-specific targeting on the biodistribution and efficacy of siRNA nanoparticles measured by multimodality in vivo imaging.
        Proc Natl Acad Sci U S A. 2007; 104: 15549-15554
        • Nahrendorf M.
        • Zhang H.W.
        • Hembrador S.
        • et al.
        Nanoparticle PET-CT imaging of macrophages in inflammatory atherosclerosis.
        Circulation. 2008; 117: 379-387